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Sources of Magnetic Fields 
 
In Chapter 8, we defined what we mean by a magnetic field and discussed at length the 
effect the magnetic field has on moving electric charges.  In this Chapter, we consider the 
manner by which magnetic fields are produced.   
 
9.1 Biot-Savart Law 
 
Currents, which arise due to the motion of charges, are the source of magnetic fields. 
When charges move in a conducting wire and produce a current  I , the magnetic field at 
any point  P  due to the current can be calculated by adding up the magnetic field 
contributions, dB


, from small segments of the wire d s , (Figure 9.1.1).  

 

 
Figure 9.1.1 Magnetic field dB


 at point  P  due to a current-carrying element I d s . 

 
These segments can be thought of as a vector quantity having a magnitude of the length 
of the segment and pointing in the direction of the current flow. The infinitesimal current 
source can then be written as I d s .  
 

Let r denote the distance from the current source to the field point  P , and r̂  the 
corresponding unit vector. The Biot-Savart law gives an expression for the magnetic field 
contribution, dB


, from the current source, Id s ,  

 

 0
2

ˆ
4
I dd
r

µ
π

×= s rB


, (9.1.1) 

 
where 0µ is a constant called the permeability of free space, 
 
                                                  7

0 4 10 T m/Aµ π −= × ⋅ .                                               (9.1.2) 
 
Notice that the expression is remarkably similar to the Coulomb’s law for the electric 
field due to a charge element dq, 

 2
0

1 ˆ
4

dqd
rπε

=E r


. (9.1.3) 
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Adding up these contributions to find the magnetic field at the point P requires 
integrating over the current source, 
 

 0
2

wire wire

ˆ
4
I dd

r
µ
π

×= =∫ ∫
s rB B
 

. (9.1.4) 

 
The integral is a vector integral, which means that the expression for B


 is really three 

integrals, one for each component of B


. The vector nature of this integral appears in the 
cross product ˆI d ×s r . Understanding how to evaluate this cross product and then 
perform the integral will be the key to learning how to use the Biot-Savart law. 
 
Example 9.1:  Magnetic Field due to a Finite Straight Wire  

 
 

Figure 9.1.2 A thin straight wire carrying a current  I . 
 
A thin, straight wire carrying a current  I  is placed along the x-axis, as shown in Figure 
9.1.2. Evaluate the magnetic field at point  P . Note that we have assumed that the leads to 
the ends of the wire make canceling contributions to the net magnetic field at the point  P . 
 
Solution: This is a typical example involving the use of the Biot-Savart law. Consider a 
differential element ˆ'd dx=s i  carrying current  I  in the x-direction. The location of this 
source is represented by ˆ' 'x=r i . Because the field point  P  is located at ( , ) (0, )x y a= , 
the position vector describing  P  is ˆ

P a=r j . The vector 'P= −r r r    is a “relative” position 

vector which points from the source point to the field point. In this case, ˆ ˆ'a x= −r j i , and 

the magnitude 2 2| | 'r a x= = +r is the distance from between the source and  P . The 
corresponding unit vector is given by 
 

 
2 2

ˆ ˆ' ˆ ˆˆ sin cos
'

a x
r a x

θ θ−= = = −
+

r j ir j i


. 
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The cross product is given by 
 
 ˆ ˆ ˆ ˆˆ ( ' ) ( cos sin ) ( 'sin )d dx dxθ θ θ× = × − + =s r i i j k . 
 
The contribution to the magnetic field due to Id s  is 
 

 0 0
2 2

ˆ sin ˆ
4 4
I Id dx

d
r r

µ µ θ
π π

×= =s rB k


, 

 
which shows that the magnetic field at  P  will point in the ˆ+k  direction, or out of the 
page. The variables θ, x and r are not independent of each other. In order to complete the 
integration, let us rewrite the variables x and r in terms of θ. From Figure 9.1.2, we have 
 

 
  

r = a / sinθ = acscθ

x = acotθ ⇒ dx = −acsc2θ dθ.

⎧
⎨
⎪

⎩⎪
 

 
Upon substituting the above expressions, the differential contribution to the magnetic 
field is  

 
2

0 0
2

( csc )sin sin
4 ( csc ) 4
I Ia ddB d

a a
µ µθ θ θ θ θ
π θ π

−= = − . 

  
Integrating over all angles subtended from 1θ−  to 2θ  (a negative sign is needed for 1θ  in 
order to take into consideration the portion of the length extended in the negative x axis 
from the origin), we obtain 
 

 2

1

0 0
2 1sin (cos cos )

4 4
I IB d
a a

θ

θ

µ µθ θ θ θ
π π−

= − = +∫ . (9.1.5) 

  
The first term involving 2θ  accounts for the contribution from the portion along the +x 
axis, while the second term involving 1θ  contains the contribution from the portion along 
the x−  axis. The two terms add! Let’s examine the following cases:  
 
(i) In the symmetric case where 2 1θ θ= − , the field point  P  is located along the 

perpendicular bisector. If the length of the rod is 2L , then 2 2
1cos /L L aθ = +  and the 

magnetic field is  

 0 0
1 2 2

cos
2 2
I I LB
a a L a

µ µθ
π π

= =
+

. (9.1.6) 
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(ii) The infinite length limit L→∞  . This limit is obtained by choosing 1 2( , ) (0,0)θ θ = . 
The magnetic field at a distance a away becomes   
 

 0

2
IB
a

µ
π

= . (9.1.7) 

 
Note that in this limit, the system possesses cylindrical symmetry, and the magnetic field 
lines are circular, as shown in Figure 9.1.3. 

 

 
 

Figure 9.1.3 Magnetic field lines due to an infinite wire carrying current  I . 
 
In fact, the direction of the magnetic field due to a long straight wire can be determined 
by the right-hand rule (Figure 9.1.5). If you direct your right thumb along the direction of 
the current in the wire, then the fingers of your right hand curl in the direction of the 
magnetic field. In cylindrical coordinates   (r,φ, z)  where the unit vectors are related by 

  ̂r × φ̂ = ẑ , if the current flows in the +z-direction, then, using the Biot-Savart law, the 
magnetic field must point in the ϕ -direction. 
 
 

 
 

Figure 9.1.4 Direction of the magnetic field due to an infinite straight wire 
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Example 9.2:  Magnetic Field due to a Circular Current Loop  
 
A circular loop of radius R in the xy-plane carries a steady current  I , as shown in Figure 
9.1.5.  
 
(a) What is the magnetic field at a point  P  on the axis of the loop, at a distance z from 
the center? 
 
(b) If we place a magnetic dipole     


µ = µzk̂  at  P , find the magnetic force experienced by 

the dipole. Is the force attractive or repulsive? What happens if the direction of the dipole 
is reversed, i.e.,     


µ = −µzk̂ ? 

 
 

Figure 9.1.5 Magnetic field due to a circular loop carrying a steady current. 
 
 
 
Solution: 
 
(a) This is another example that involves the application of the Biot-Savart law.  In 
Cartesian coordinates, the differential current element located at ˆ ˆ' (cos ' sin ' )R φ φ= +r i j  
can be written as ˆ ˆ( '/ ') ' '( sin ' cos ' )Id I d d d IRdφ φ φ φ φ= = − +s r i j  . Because the field point 
 P  is on the axis of the loop at a distance z from the center, its position vector is given by 

ˆ
P z=r k . The relative position vector is given by 

 
 ˆ ˆ ˆ' cos ' sin 'P R R zφ φ− = − − +r = r r i j k   , (9.1.8) 
 
Its magnitude  the distance between the differential current element and  P , 
 

 ( )22 2 2 2( cos ') sin 'r R R z R zφ φ= = − + − + = +r . (9.1.9) 
 
Thus, the corresponding unit vector from    I d s  to  P  can be written as  
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'ˆ

| ' |
P

Pr
−= =
−

r rrr
r r

 
  . 

 
The cross product ( ')Pd × −s r r    can be simplified as 
 

    

d s× (
rP −
r ') = R dφ '(− sinφ ' î + cosφ ' ĵ) × (−Rcosφ ' î − Rsinφ ' ĵ+ z k̂)         

= R dφ '(z cosφ ' î + z sinφ ' ĵ+ R k̂).
 (9.1.10) 

 
Using the Biot-Savart law, the contribution of the current element to the magnetic field at 
P is 

 

    

d

B =

µ0 I
4π

d s × r̂
r 2

=
µ0 I
4π

d s × r
r3

=
µ0 I
4π

d s × (
rP −
r ')

|
rP −
r ' |3

=
µ0 IR
4π

z cosφ ' î + z sinφ ' ĵ+ R k̂
(R2 + z2 )3/ 2

dφ '.

       (9.1.11) 

 
Using the result obtained above, the magnetic field at  P  is  
 

 
2

0
2 2 3/ 20

ˆ ˆ ˆcos ' sin '
'

4 ( )
IR z z R d

R z
πµ φ φ φ

π
+ +=
+∫

i j kB


. (9.1.12) 

 
The x and the y components of B


 can be readily shown to be zero, 

 

 
  
Bx =

µ0 IRz
4π (R2 + z2 )3/ 2

cosφ 'dφ '
0

2π

∫ =
µ0 IRz

4π (R2 + z2 )3/ 2
sinφ '

2π
0

= 0 , (9.1.13) 

 

 
2

0 0
2 2 3/ 2 2 2 3/ 20

2
sin ' ' cos ' 0

04 ( ) 4 ( )y
IRz IRzB d

R z R z
π πµ µφ φ φ

π π
= =− =

+ +∫ . (9.1.14) 

 
On the other hand, the z component is  
 

 
22 220 0 0

2 2 3/ 2 2 2 3/ 2 2 2 3/ 20

2'
4 ( ) 4 ( ) 2( )z

IRIR IRB d
R z R z R z

πµ µ µπφ
π π

= = =
+ + +∫ . (9.1.15) 

 
Thus, we see that along the symmetric axis, zB  is the only non-vanishing component of 
the magnetic field. The conclusion can also be reached by using symmetry arguments. 
The plot of 0/zB B  where 0 0 / 2B I Rµ=  is the magnetic field strength at 0z = , as a 
function of /z R  is shown in Figure 9.1.6. 
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Figure 9.1.6 Plot of the ratio of the magnetic field, 0/zB B , as a function of /z R  
 
(b) If we place a magnetic dipole     


µ = µzk̂  at the point  P , as discussed in Chapter 8, due 

to the non-uniformity of the magnetic field, the dipole will experience a force given by 
 

 
    


FB = ∇(


µ ⋅

B) = ∇(µz Bz ) = µz

dBz

dz
k̂ . (9.1.16) 

 
Upon differentiating Eq. (9.1.15) and substituting into Eq. (9.1.16), we obtain 
 

 
2

0
2 2 5/ 2

3 ˆ
2( )

z
B

IR z
R z
µ µ= −

+
F k


. (9.1.17) 

 
Thus, the dipole is attracted toward the current-carrying ring. If the direction of the dipole 
is reversed,     


µ = −µzk̂ , the resulting force will be repulsive.  

 
 
9.1.1 Magnetic Field of a Moving Point Charge 
 
Suppose we have an infinitesimal current element in the form of a cylinder of cross-
sectional area A and length ds consisting of n charge carriers per unit volume, all moving 
at a common velocity v  along the axis of the cylinder.  Let  I  be the current in the 
element, which we define as the amount of charge passing through any cross-section of 
the cylinder per unit time. From Chapter 6, we see that the current  I  can be written as  
 
 n Aq I=v . (9.1.18)                                      

 
The total number of charge carriers in the current element is simply dN n Ads= . Using 
Eq. (9.1.1), the magnetic field dB


 due to the  dN  charge carriers is given by 
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 0 0 0
2 2 2

ˆ ˆ ˆ( | |) ( ) ( )
4 4 4

nAq d n A ds q dN qd
r r r

µ µ µ
π π π

× × ×= = =v s r v r v rB
  

, (9.1.19) 

  
where r is the distance between the charge and the field point  P  at which the field is 
being measured, the unit vector ˆ / r=r r  points from the source of the field (the charge) to 
 P . The differential length vector d s  is defined to be parallel to v .  In case of a single 
charge, 1dN = , the above equation becomes 
 

 0
2

ˆ
4

q
r

µ
π

×= v rB


. (9.1.20) 

 
Because a point charge does not constitute a steady current, the above equation only 
holds in the non-relativistic limit, where  v << c , ( c  is the speed of light), so that the 
effect of “retardation” can be ignored.   
 
The result may be readily extended to a collection of N point charges, each moving with a 
different velocity. Let the ith charge iq  be located at ( , , )i i ix y z  and moving with velocity 

iv
 . Using the superposition principle, the magnetic field at  P  can be obtained as:   
 

 0
3/ 22 2 21

ˆ ˆ ˆ( ) ( ) ( )
4 ( ) ( ) ( )

N
i i i

i i
i i i i

x x y y z z
q

x x y y z z

µ
π=

⎡ ⎤− + − + −⎢ ⎥= ×
⎢ ⎥⎡ ⎤− + − + −⎣ ⎦⎣ ⎦

∑ i j kB v
  . (9.1.21) 

 
9.1.2 Magnetic Field of a Moving Charge Movie 
 
Figure 9.1.7 shows one frame of the animations of the magnetic field of a moving 
positive and negative point charge, assuming the speed of the charge is small compared 
to the speed of light.   
 

  
       (a)   http://youtu.be/JmqX1GrMYnU              (b)  http://youtu.be/Apde4g619RA 
 
Figure 9.1.7 The magnetic field of (a) a moving positive charge and of (b) a moving 
negative charge when the speed of the charge is small compared to c. 
 

https://youtu.be/Q0ahOcpBDR8
https://youtu.be/lJ2hVjfg5CY
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9.1.3 Magnetic Field of Four Charges Moving in a Circle Movie 
 
Suppose we want to calculate the magnetic fields of a number of charges moving on the 
circumference of a circle with equal spacing between the charges.  To calculate this field 
we have to add up vectorially the magnetic fields of each of charges using Eq. (9.1.19).    

 

   http://youtu.be/-ylqucmTd00 
 
Figure 9.1.8 The magnetic field of four charges moving in a circle.  We show the 
magnetic field vector directions in only one plane. The bullet-like icons indicate the 
direction of the magnetic field at that point in the array spanning the plane. 
 
Figure 9.1.8 shows one frame of the animation when the number of moving charges is 
four.  When the number of charges becomes eight, a characteristic pattern emerges--the 
magnetic dipole pattern.   Far from the ring, the shape of the field lines is the same as the 
shape of the field lines for an electric dipole.   
 
 
9.2 Force Between Two Parallel Wires 
 
9.2.1 Forces between Current-Carrying Parallel Wires—The Experiment 
 
 

                      
 
 (a)   http://youtu.be/rU7QOukFjTo           (b)  http://youtu.be/rU7QOukFjTo  
 
 

Figure 9.2.1  Current-carrying parallel wires can repel or attract each other. 

https://youtu.be/_1T-WnXDc2A
https://youtu.be/rU7QOukFjTo
https://youtu.be/rUL71B6gGd8
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Two long parallel wires carrying current in opposite directions will repel one another.  
This is shown in Figure 9.1.1(a).  If the current is in the same direction in both wires, the 
wires will attract one another, as shown in Figure 9.1.1(b).  The movie linked to Figure 
9.1.1 shows this behavior for the two directions of current. 
 
9.2.2 Forces between Parallel Wires—The Standard Argument 
 
To explain this phenomenon, we first give the standard argument that you will find in 
almost all introductory textbooks.  We have already seen that a current-carrying wire 
produces a magnetic field. In addition, when placed in a magnetic field, a wire carrying a 
current will experience a net force. Thus, we expect two current-carrying wires to exert 
forces on each other. 
 
 Consider two parallel wires separated by a distance a and carrying currents   I1  and   I2  in 
the +x-direction, as shown in Figure 9.2.1. 
 

 
 

Figure 9.2.1 Force between two parallel wires 
 

The magnetic force,    

F21 , exerted by wire 2 on wire 1 may be computed as follows. Using 

the result from the previous example, the magnetic field lines due to   I2  going in the +x-

direction are circles concentric with wire 2, with the field 2B


 pointing in the tangential 

direction. Thus, at an arbitrary point  P  on wire 1, we have 2 0 2
ˆ( / 2 )I aµ π= −B j


, which 

points in the direction perpendicular to wire 1, as depicted in Figure 9.2.1. Therefore,  
 

 
     


F21 = I1


l ×

B2 = I1(l î ) × −

µ0I2

2πa
ĵ

⎛
⎝⎜

⎞
⎠⎟
= −

µ0I1I2l
2πa

k̂ . (9.2.1) 

   
The force    


F21  points toward wire 2. The conclusion we can draw from this simple 

calculation is that two parallel wires carrying currents in the same direction will attract 
each other. On the other hand, if the currents flow in opposite directions, the resultant 
force will be repulsive.  Note in making this standard calculation, we never talked about 
the total magnetic field due to both current-carrying wires.  We did not need to do this to 
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calculate the force because the force on wire 1 due to its own magnetic field is zero, so 
we can ignore its presence and still get the correct answer for the force on wire 1.   
 
9.2.3 Forces between Parallel Wires Movie—Faraday’s Argument 
 
To get a more intuitive feel for what causes this attraction or repulsion, we look at the 
total magnetic field of the two wires, and interpret the result we obtained above in Eq. 
(9.2.1) in terms of pressures and tensions transmitted between the wires by the magnetic 
field, as indicated by the shape of the total field lines.  Figures 9.2.2 shows parallel wires 
carrying current in the same and in opposite directions, and the corresponding total 
magnetic fields.  In the first case, the magnetic field configuration produces an attraction 
between the wires.  This is because the magnetic tension between the wires pulls them 
together, whereas the higher magnetic pressure outside the wires pushes them together.   
In the second case the magnetic field configuration produces repulsion between the wires.  
This is because the higher magnetic pressure between the wires for pushes them apart.   

 

      
        (a)    http://youtu.be/nQX-BM3GCv4      (b)  http://youtu.be/5nKQjKgS9z0 
 
Figure 9.2.2 (a) The attraction between two wires carrying current in the same direction.  
The direction of current flow is represented by the motion of the orange spheres in the 
visualization. (b) The repulsion of two wires carrying current in opposite directions. 
 
 
9.3 Ampere’s Law (see also Ampere’s Law Simulation in Section 9.14) 
 
We now introduce Ampere’s Law.  Many of the conceptual problems students have with 
Ampere’s Law have to do with understanding the geometry, and we urge you to read the 
standard development below and then go to the Ampere’s Law simulation in Section 9.14.  
There you can interact directly with the relevant geometry in a 3D interactive simulation 
of Ampere’s Law. 
 
We have seen that moving charges or currents are the source of magnetism. This can be 
readily demonstrated by placing compass needles near a wire. As shown in Figure 9.3.1a, 
all compass needles point in the same direction in the absence of current. However, when 

0I ≠ , the needles will be deflected along the tangential direction of the circular path 
(Figure 9.3.1b).     
 

https://youtu.be/nQX-BM3GCv4
https://youtu.be/K1U3iPHirIs
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Figure 9.3.1 Deflection of compass needles near a current-carrying wire. 
 
Let us now divide a circular path of radius r into a large number of small length vectors 

    Δ
s = Δs θ̂ , that point along the tangential direction with magnitude sΔ  (Figure 9.3.2).  

 

 
 

Figure 9.3.2  Amperian loop 
 
In the limit 0Δ →s

 , we obtain 
 

 
    


B ⋅ d

s = B ds =∫∫

µ0I
2πr

⎛
⎝⎜

⎞
⎠⎟

2πr( ) = µ0I . (9.3.1) 

 
The result above is obtained by choosing a closed path, called an Amperian loop that 
follows one particular magnetic field line. Let’s consider a slightly more complicated 
Amperian loop, shown in Figure 9.3.3 
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Figure 9.3.3 An Amperian loop involving two field lines. 
 
The line integral of the magnetic field around the contour abcda is 
 

 

    


B ⋅ d

s

abcda
∫ =


B ⋅ d

s

ab
∫ +


B ⋅ d

s

bc
∫ +


B ⋅ d

s

cd
∫ +


B ⋅ d

s

cd
∫

= 0 + B2 (r2θ) + 0 + B1r1(2π −θ),
 (9.3.2) 

 
where the lengths of arcs bc is 2rθ , and  ad  is 1(2 )r π θ− . The first and the third integrals 
vanish since the magnetic field is perpendicular to the paths of integration. With 
1 0 1/ 2B I rµ π=  and 2 0 2/ 2B I rµ π= , the above expression becomes  

 

 
    


B ⋅ d

s

abcda
∫ =

µ0I
2πr2

(r2θ) +
µ0I
2πr1

r1(2π −θ) =
µ0I
2π

θ +
µ0 I
2π

(2π −θ) = µ0 I . (9.3.3) 

 
We see that the same result is obtained whether the closed path involves one or two 
magnetic field lines.  
 
As shown in Example 9.1, in cylindrical coordinates   (r,φ, z)  with current flowing in the 
+z-axis, the magnetic field is given by     


B = (µ0I / 2πr)φ̂ . An arbitrary length element in 

the cylindrical coordinates can be written as  
 
     d

s = dr r̂ + r dφ φ̂ + dz ẑ , (9.3.4) 
which implies  
 

 
    


B ⋅ d

s

closed path
∫ =

µ0I
2πr

⎛
⎝⎜

⎞
⎠⎟

r dφ
closed path
∫ =

µ0I
2π

dφ
closed path
∫ =

µ0I
2π

(2π ) = µ0I . (9.3.5) 

 
In other words, the line integral of    


B ⋅ d

s∫  around any closed Amperian loop is 

proportional to encI , the current encircled by the loop.  
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Figure 9.3.4 An Amperian loop of arbitrary shape. 
 

The generalization to any closed loop of arbitrary shape (see for example, Figure 9.3.4) 
that involves many magnetic field lines is known as Ampere’s law, 
 
     


B ⋅∫ d

s = µ0 Ienc . (9.3.6) 

 
Ampere’s law in magnetism is analogous to Gauss’s law in electrostatics. In order to 
apply them, the system must possess certain symmetry. In the case of an infinite wire, the 
system possesses cylindrical symmetry and Ampere’s law can be readily applied. 
However, when the length of the wire is finite, Biot-Savart law must be used instead.  
 

Biot-Savart Law 0
2

ˆ
4
I d

r
µ
π

×= ∫
s rB


 general current source 
ex: finite wire 

Ampere’s law     

B ⋅∫ d

s = µ0 Ienc  current source has certain symmetry 

ex: infinite wire (cylindrical)  
   
Ampere’s law is applicable to the following current configurations: 
 
1. Infinitely long straight wires carrying a steady current  I  (Example 9.3). 
 
2. Infinitely large sheet of thickness b with a current density   


J  (Example 9.4). 

 
3.  Infinite solenoid (Section 9.4). 
 
4. Toroid (Example 9.5). 
 
We shall examine all four configurations in detail.  
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Example 9.3:  Field Inside and Outside a Current-Carrying Wire 
 
Consider a long straight wire of radius  R  carrying a current  I  of uniform current density, 
as shown in Figure 9.3.5. Find the magnetic field everywhere.  
 

 
 

Figure 9.3.5 Amperian loops for calculating the B


 field of a conducting wire of radius 
 R . 
 
Solution: 
 
(i) Outside the wire where r R≥ , the Amperian loop (circle 1) completely encircles the 
current, i.e., encI I= . Applying Ampere’s law yields 

 
 

    

B ⋅ d

s = B ds =∫∫ B 2πr( ) = µ0I . 

 
The magnetic field is then 

 
  
B =

µ0 I
2πr

, r ≥ R . 

 
(ii) Inside the wire where r R< , the amount of current encircled by the Amperian loop 
(circle 2) is proportional to the area enclosed,  
 

 
2

enc 2

rI I
R

π
π

⎛ ⎞
= ⎜ ⎟
⎝ ⎠

. 

Thus, we have   

 
    


B ⋅ d

s =∫ B 2πr( ) = µ0I πr 2

πR2

⎛

⎝⎜
⎞

⎠⎟
. 

 
The magnetic field is then 

  
B =

µ0Ir
2πR2 , r < R . 
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We see that the magnetic field is zero at the center of the wire and increases linearly with 
r until  r = R . Outside the wire, the field falls off as   1 / r . The qualitative behavior of the 
field is depicted in Figure 9.3.6. 
 

 
 
Figure 9.3.6 Magnetic field of a conducting wire of radius  R  carrying a steady current I . 
 
 
Example 9.4:  Magnetic Field Due to an Infinite Current Sheet 
 
Consider an infinitely large sheet of thickness b lying in the xy-plane with a uniform 
current density 0

ˆJ=J i


. Find the magnetic field everywhere. 
 

 
 

Figure 9.3.7 An infinite sheet with current density 0
ˆJ=J i


. 

 
Solution: We may think of the current sheet as a set of parallel wires carrying currents in 
the +x-direction. From Figure 9.3.8, we see that magnetic field at a point  P  above the 
plane points in the negative y-direction. The z-component vanishes after adding up the 
contributions from all wires. Similarly, we may show that the magnetic field at a point 
below the plane points in the positive y-direction. 
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Figure 9.3.8 Magnetic field of a current sheet. 
 
We may now apply Ampere’s law to find the magnetic field due to the current sheet. The 
Amperian loops are shown in Figure 9.3.9. 

 
 

Figure 9.3.9 Amperian loops for the current sheets. 
 
For the field outside, 

  
z > b / 2 , we integrate along path 1C . The amount of current 

enclosed by 1C  is  

 enc 0 ( )I d J b= ⋅ =∫∫ J A


 . (9.3.7) 
 
Applying Ampere’s law leads to  
 
 

     

B ⋅ d

s∫ = B(2) = µ0 Ienc = µ0 (J0b) . (9.3.8) 

 
Therefore the magnetic field is 
 
 

  
B = µ0 J0b / 2, z > b / 2 . (9.3.9) 
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Note that the magnetic field outside the sheet is constant, independent of the distance 
from the sheet. Next we find the magnetic field inside the sheet, 

  
z < b / 2 . The amount 

of current enclosed by path 2C  is  

 
     
Ienc =


J∫∫ ⋅ d

A = J0 (2 | z |)  (9.3.10) 

 
Applying Ampere’s law, we obtain 
 
 

     

B ⋅ d

s∫ = B(2) = µ0 Ienc = µ0 J0 (2 | z |) . (9.3.11) 

 
Therefore the magnetic field is 
 
 

  
B = µ0J0 | z |, z < b / 2 . (9.3.12) 

 
At 0z = , the magnetic field vanishes, as required by symmetry. The results can be 
summarized using the unit-vector notation as 
 

 

    


B =

−
µ0J0b

2
ĵ,   z > b / 2

−µ0J0z  ̂j,   − b / 2 < z < b / 2

  
µ0J0b

2
ĵ,   z < −b / 2.

⎧

⎨

⎪
⎪⎪

⎩

⎪
⎪
⎪

 (9.3.13) 

 
Let’s now consider the limit where the sheet is infinitesimally thin, 0b→ . In this case, 
instead of current density 0

ˆJ=J i


, we have surface current ˆK=K i


, where 0K J b= . 
Note that the dimension of K is current/length. In this limit, the magnetic field becomes  
 

 

    


B =

−
µ0 K

2
ĵ,   z > 0

  
µ0 K

2
ĵ,   z < 0.

⎧

⎨
⎪⎪

⎩
⎪
⎪

 (9.3.14) 

 
9.4 Solenoid 
 
A solenoid is a long coil of wire tightly wound in the helical form. Figure 9.4.1 shows the 
magnetic field lines of a solenoid carrying a steady current I. We see that if the turns are 
closely spaced, the resulting magnetic field inside the solenoid becomes fairly uniform, 
provided that the length of the solenoid is much greater than its diameter. For an “ideal” 
solenoid, which is infinitely long with turns tightly packed, the magnetic field inside the 
solenoid is uniform and parallel to the axis, and vanishes outside the solenoid.      
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Figure 9.4.1 Magnetic field lines of a solenoid 

  
We can use Ampere’s law to calculate the magnetic field strength inside an ideal solenoid. 
The cross-sectional view of an ideal solenoid is shown in Figure 9.4.2.  
 

 
 

Figure 9.4.2 Amperian loop for calculating the magnetic field of an ideal solenoid. 
 
To compute B


, we consider a rectangular path of length l and width w and traverse the 

path in a counterclockwise manner. The line integral of B


along this loop is 
 

 

    


B∫ ⋅ d

s =


B ⋅ d

s

1
∫ +


B ⋅ d

s

2
∫ +


B ⋅ d

s

3
∫ +


B ⋅ d

s

4
∫

= 0 + 0 + Bl + 0.
 (9.4.1) 

 
In the above, the contributions along sides 2 and 4 are zero because B


 is perpendicular to 

d s . In addition, =B 0


 along side 1 because the magnetic field is non-zero only inside 
the solenoid. On the other hand, the current enclosed by the Amperian loop is encI NI= , 
where N is the number of enclosed turns. Applying Ampere’s law yields 
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
B ⋅ d

s = Bl = µ0NI∫ . (9.4.2) 

 
The magnetic field inside the solenoid is then 
 

 0
0

NIB nI
l

µ µ= = , (9.4.3) 

 
where /n N l=  represents the number of turns per unit length., In terms of the surface 
current, K nI= , which has dimensions of current per unit length, the magnetic field can 
also be written as  
 0B Kµ= . (9.4.4) 
 
What happens if the length of the solenoid is finite? To find the magnetic field due to a 
finite solenoid, we shall approximate the solenoid as consisting of a large number of 
circular loops stacking together.  

 
Figure 9.4.3 Finite Solenoid 

 
Using the result obtained in Example 9.2, the magnetic field at a point P on the z axis 
may be calculated as follows: Take a cross section of tightly packed loops located at z’ 
with a thickness 'dz , as shown in Figure 9.4.3. The amount of current is proportional to 
the thickness of the cross section and is given by ( ') ( / ) 'dI I ndz I N l dz= = , where 

/n N l=  is the number of turns per unit length.  
 
The contribution to the magnetic field at P due to this subset of loops is  
 

 
2 2

0 0
2 2 3/ 2 2 2 3/ 2 ( ')

2[( ') ] 2[( ') ]z
R RdB dI nIdz

z z R z z R
µ µ= =

− + − +
. (9.4.5) 

 
Integrating over the entire length of the solenoid, we obtain 
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Bz =
µ0nIR2

2
dz '

[(z − z ')2 + R2 ]3/ 2− l / 2

l / 2

∫ =
µ0nIR2

2
z '− z

R2 (z − z ')2 + R2

l / 2

−l / 2

=
µ0nI

2
(l / 2) − z

(z − l / 2)2 + R2
+

(l / 2) + z

(z + l / 2)2 + R2

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
.

 (9.4.6) 

 
A plot of 0/zB B , where 0 0B nIµ=  is the magnetic field of an infinite solenoid, as a 
function of /z R  is shown in Figure 9.4.4 for 10l R=  and 20l R= .  
 

 

 

 
 
Figure 9.4.4 Plot of magnetic field of a finite solenoid for (a) 10l R= , and (b) 20l R= . 

 
Notice that the value of the magnetic field in the region | | / 2z l< is nearly uniform and 
approximately equal to 0B . 
 
 
Examaple 9.5: Toroid 
 
Consider a toroid that consists of N turns, with inner radius  a  and outer radius  b , as 
shown in Figure 9.4.5. Find the magnetic field everywhere. 
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Figure 9.4.5  A toroid with N turns 
 
Solution: One can think of a toroid as a solenoid wrapped around with its ends connected. 
Thus, the magnetic field is completely confined inside the toroid and the field points in 
the azimuthal direction (clockwise due to the way the current flows, as shown in Figure 
9.4.5.)  
 
Applying Ampere’s law using a circular loop of radius  r , for the region  a < r < b , we 
obtain 
 
 

    

B ⋅ d

s∫ = Bds∫ = B ds =∫ B(2πr) = µ0 NI . (9.4.7) 

 
The magnitude of the magnetic field is 
 

 
  
B =

µ0 NI
2πr

, a < r < b , (9.4.8) 

 
where  r  is the distance measured from the center of the toroid. Unlike the magnetic field 
of a solenoid, the magnetic field inside the toroid is non-uniform and decreases as 1/ r .  
 
For the region  r < a , there is no current enclosed in a circular Amperian loop of radius  r , 
so the magnetic field is zero. In the region  r > b , the enclosed current in a circular 
Amperian loop of radius  r  is   Ienc = NI − NI = 0  because windings cut through the loop 
in opposite directions. Therefore the magnetic field is zero for  r > b .  
 
 
9.5 Magnetic Field of a Dipole 
 
Let a magnetic dipole moment vector     


µ = −µzk̂  be placed at the origin (e.g., center of the 

Earth) in the yz plane. What is the magnetic field at a point (e.g., MIT) a distance r away 
from the origin?  
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Figure 9.5.1 Earth’s magnetic field components 
 
In Figure 9.5.1 we show the magnetic field at MIT due to the dipole. The y- and z- 
components of the magnetic field are given by  
 

 20 0
3 3

3
sin cos ,         (3cos 1)

4 4y zB B
r r

µ µµ µθ θ θ
π π

= − = − − . (9.5.1) 

 
(Readers are referred to Section 9.8 for the detail of the derivation.) 
 
In spherical coordinates 

� 

(r,θ,φ) , the radial and the polar components of the magnetic 
field can be written as 

 

  

Br = By sinθ + Bz cosθ = −
µ0

4π
2µ
r3

cosθ ,

Bθ = By cosθ − Bz sinθ = −
µ0

4π
µ
r3

sinθ.
, (9.5.2) 

 
Thus, the magnetic field at MIT due to the dipole becomes 
 

 
    


B = Bθ θ̂ + Br r̂ = −

µ0

4π
µ
r3

(sinθ θ̂ + 2cosθ r̂) . (9.5.3) 

 
Notice the similarity between the above expression and the electric field due to an electric 
dipole p  (see Solved Problem 2.14.4), 
 

 
    


E =

1
4πε0

p
r3

(sinθ θ̂ + 2cosθ r̂) . 
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The negative sign in Eq. (9.5.3) is due to the fact that the magnetic dipole points in the 
negative  z -direction.  In general, the magnetic field due to a dipole moment  


µ  can be 

written as 

 
    


B =

µ0

4π
3(

µ ⋅ r̂)r̂ −


µ

r3 . (9.5.4) 

 
The ratio of the radial and the polar components is given by  
 

 
0

3

0
3

2 cos
4 2cot

sin
4

rB r
B

r
θ

µ µ θ
π θµ µ θ
π

−
= =

−
. (9.5.5) 

 
 
9.5.1 Earth’s Magnetic Field at MIT  
 
The Earth’s field behaves as if there were a bar magnet in it. In Figure 9.5.2 an imaginary 
magnet is drawn inside the Earth oriented to produce a magnetic field like that of the 
Earth’s magnetic field. Note the south pole of such a magnet is in the northern 
hemisphere in order to attract the north pole of a compass. 
 

 
Figure 9.5.2 Magnetic field of the Earth  

 
It is most natural to represent the location of a point P on the surface of the Earth using 
the spherical coordinates ( , , )r θ φ , where r is the distance from the center of the Earth, θ  
is the polar angle from the z-axis, with 0 θ π≤ ≤ , and φ  is the azimuthal angle in the xy-
plane, measured from the x-axis, with 0 2φ π≤ ≤  (See Figure 9.5.3.) With the distance 
fixed at Er r= , the radius of the Earth, the point P is parameterized by the two angles θ  
and φ .   
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Figure 9.5.3 Locating a point P on the surface of the Earth using spherical coordinates. 
 
In practice, two numbers describe a location on Earth: latitude and longitude. How are 
they related to θ  and φ ?  The latitude of a point, denoted as λ , is a measure of the 
elevation from the plane of the equator. Thus, it is related to θ  (commonly referred to as 
the co-latitude) by  λ = 90° −θ . Using this definition, the equator has latitude 0° , and the 
north and the south poles have latitude  ± 90° , respectively.  
 
The longitude of a location is simply represented by the azimuthal angle φ  in the 
spherical coordinates. Lines of constant longitude are generally referred to as meridians.  
The value of longitude depends on where the counting begins. For historical reasons, the 
meridian passing through the Royal Astronomical Observatory in Greenwich, UK, is 
chosen as the “prime meridian” with zero longitude. 
 
Let the  z -axis be the Earth’s rotation axis, and the  x -axis passes through the prime 
meridian. The corresponding magnetic dipole moment of the Earth can be written as 
 

 
    


µ E = µE (sinθ0 cosφ0 î + sinθ0 sinφ0 ĵ+ cosθ0 k̂)

= µE (−0.062 î + 0.18 ĵ− 0.98k̂),
 (9.5.6) 

 
where 22 27.79 10 A mEµ = × ⋅ , and we have used 0 0( , ) (169 ,109 )θ φ = ° ° . The expression 
shows that   


µ E  has non-vanishing components in all three directions in the Cartesian 

coordinates.  
 
On the other hand, the location of MIT is 42 N°  for the latitude and 71 W°  for the 
longitude ( 42°  north of the equator, and 71°  west of the prime meridian), which means 
that 90 42 48mθ = °− ° = ° , and 360 71 289mφ = °− ° = ° . Thus, the position of MIT can be 
described by the vector 
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rMIT = rE (sinθm cosφm î + sinθm sinφm ĵ+ cosθm k̂)

= rE (0.24 î − 0.70 ĵ+ 0.67 k̂).
 (9.5.7) 

 
The angle between   −


µ E  and MITr

  is given by 
 

 
    
θME = cos−1 −rMIT ⋅


µ E

|
rMIT || −


µ E |

⎛

⎝⎜
⎞

⎠⎟
= cos−1(0.80) = 37° . (9.5.8) 

 
Note that the polar angle θ  is defined as 1 ˆˆcos ( )θ −= ⋅r k , the inverse of cosine of the dot 
product between a unit vector r̂  for the position, and a unit vector ˆ+k  in the positive  z -
direction, as indicated in Figure 9.6.1. Thus, if we measure the ratio of the radial to the 
polar component of the Earth’s magnetic field at MIT, the result would be 
 

 2cot 37 2.65rB
Bθ

= ° ≈ . (9.5.9) 

 
The positive radial (vertical) direction is chosen to point outward and the positive polar 
(horizontal) direction points towards the equator. 
 
 
 
9.6 Magnetic Materials  
 
The introduction of material media into the study of magnetism has very different 
consequences as compared to the introduction of dielectric material media into the study 
of electrostatics.  When we dealt with dielectric materials in electrostatics, their effect 
was always to reduce E


 below what it would otherwise be, for a given amount of “free” 

electric charge.  In contrast, when we deal with magnetic materials, their effect can be 
one of the following: 
 
(i) reduce B


 below what it would otherwise be, for the same amount of "free" electric 

current (diamagnetic  materials);  
 
(ii) increase B


 a little above what it would otherwise be (paramagnetic  materials);  

 
(iii) increase B


 a lot  above what it would otherwise be (ferromagnetic materials).   

 
Below we discuss how these effects arise.   
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9.6.1 Magnetization  
 
Magnetic materials consist of many permanent or induced magnetic dipoles.  One of the 
concepts crucial to the understanding of magnetic materials is the average magnetic field 
produced by many magnetic dipoles that are all aligned.   

 
 

Figure 9.6.1 A cylinder with N magnetic dipole moments 
 
 
Suppose we have a piece of material in the form of a long cylinder with area A  and 
height L, and that it consists of N magnetic dipoles, each with magnetic dipole moment  


µ , 

of magnitude µ , spread uniformly throughout the volume of the cylinder, as shown in 
Figure 9.6.1. We also assume that all of the magnetic dipole moments  


µ  are aligned with 

the axis of the cylinder. In the absence of any external magnetic field, what is the average 
magnetic field due to these dipoles alone?    
 
To answer this question, we note that each magnetic dipole has its own magnetic field 
associated with it.  Let’s define the magnetization vector M


 to be the net magnetic dipole 

moment vector per unit volume, 

 
    


M = 1

V

µ

i
∑ , (9.6.1) 

        
where V is the volume. In the case of the cylinder, where all the dipoles are aligned, the 
magnitude of M


 is simply   M = Nµ / AL .  What is the average magnetic field produced 

by all the dipoles in the cylinder?  
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Figure 9.6.2 (a) Top view of the cylinder containing magnetic dipole moments. (b) The 
equivalent current. 
 
Figure 9.6.2(a) depicts small current loops associated with the dipole moments and the 
direction of the currents, as seen from above.  We see that in the interior, currents in a 
given direction are cancelled out by currents in the opposite direction in neighboring 
loops. The only place where cancellation does not take place is near the edge of the 
cylinder where there are no adjacent loops further out. Thus, the average current in the 
interior of the cylinder vanishes, whereas the sides of the cylinder appear to carry a 
current.  The equivalent situation is shown in Figure 9.6.2(b), where there is an 
equivalent current eqI  on the sides. 
 
The functional form of eqI  may be deduced by requiring that the magnetic dipole 
moment produced by eqI  is equal to the magnetic dipole moment of the system,  
 
 eqI A Nµ= . (9.6.2) 
 
This condition requires that the equivalent current is given by 
 

 eq
NI
A
µ= . (9.6.3) 

 
Next, let’s calculate the magnetic field produced by eqI . With  eqI  running on the sides, 
the equivalent configuration is identical to a solenoid carrying a surface current K . The 
two quantities are related by 
 

 eqI NK M
L AL

µ= = =  (9.6.4) 

 
Thus, we see that the surface current K  is equal to the magnetization M , which is the 
average magnetic dipole moment per unit volume.  The average magnetic field inside the 
material produced by the equivalent current system is given by (see Section 9.4) 
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 0 0MB K Mµ µ= = . (9.6.5) 

Because the direction of this magnetic field is in the same direction as M


, the above 
expression may be written in vector notation as 
 
 0M µ=B M

 
. (9.6.6) 

 
This is exactly opposite from the situation with electric dipoles, in which the average 
electric field is anti-parallel to the direction of the electric dipoles themselves. The reason 
is that in the region interior to the current loop of a dipole, the magnetic field is in the 
same direction as the magnetic dipole vector.  Therefore, it is not surprising that after a 
large-scale averaging, the average magnetic field also turns out to be parallel to the 
average magnetic dipole moment per unit volume.  The magnetic field in Eq. (9.6.6) is 
the average field due to all the dipoles.  A very different field is observed if we go close 
to any one of these little dipoles.  
 
Let’s now examine the properties of different magnetic materials 
 
 
9.6.2 Paramagnetism 
 
The atoms or molecules comprising paramagnetic materials have a permanent magnetic 
dipole moment. In the absence of any applied external magnetic field, the permanent 
magnetic dipoles in a paramagnetic material are randomly aligned. Thus, =M 0


 and the 

average magnetic field MB


 is also zero.  However, when we place a paramagnetic 

material in an external field 0B


, the dipoles experience a torque    

τ =

µ ×

B0  that tends to 

align  

µ  with 0B


, thereby producing a net magnetization M


 parallel to 0B


.  Since MB


 is 

parallel to 0B


, it will tend to enhance 0B


. The total magnetic field B


 is the sum of these 
two fields, 
 0 0 0M µ= + = +B B B B M

    
. (9.6.7) 

 
This is a different result than in the case of dielectric materials.  In both cases, the torque 
on the dipoles causes alignment of the dipole vector parallel to the external field. 
However, in the paramagnetic case, that alignment enhances the external magnetic field, 
whereas in the dielectric case it reduces the external electric field.   In most paramagnetic 
substances, the magnetization M


 is not only in the same direction as 0B


, but also 

linearly proportional to 0B


.  This is plausible because without the external field 0B


 there 

would be no alignment of dipoles and hence no magnetization M


. The linear relation 
between M


 and 0B


 is expressed as 

 0

0
mχ µ

= BM



, (9.6.8) 
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where mχ is a dimensionless quantity called the magnetic susceptibility. Eq. (9.6.7) can 
then be written as 
 
 0 0(1 )m mχ κ= + =B B B

  
, (9.6.9) 

where  
 1m mκ χ= +  (9.6.10) 
 
is called the relative permeability of the material. For paramagnetic substances, 1mκ > , 
or equivalently, 0mχ > , although mχ  is usually on the order of 610−  to 310− . The 
magnetic  permeability mµ  of a material is defined as 
 
 0 0(1 )m m mµ χ µ κ µ= + = . (9.6.11) 
 
Paramagnetic materials have 0mµ µ> . 
  
 
9.6.3 Diamagnetism 
  
In the case of magnetic materials where there are no permanent magnetic dipoles, the 
presence of an external field 0B


 will induce magnetic dipole moments in the atoms or 

molecules.  However, these induced magnetic dipoles are anti-parallel to 0B


, leading to a 

magnetization M


, and average field MB


 that is anti-parallel to 0B


, and therefore a 
reduction in the total magnetic field strength.  For diamagnetic materials, we can still 
define the magnetic permeability, as in equation Eq. (9.6.11), although for diamagnetic 
materials 1mκ < , hence 0mχ < , although mχ  is usually on the order of 510−−  to 910−− . 
Diamagnetic materials have 0mµ µ< . 
 
 
9.6.4 Ferromagnetism 
 
In ferromagnetic materials, there is a strong interaction between neighboring atomic 
dipole moments.  Ferromagnetic materials are made up of small patches called domains, 
as illustrated in Figure 9.6.3(a). An externally applied magnetic field 0B


 will tend to line 

up those magnetic dipoles parallel to the external field, as shown in Figure 9.6.3(b). The 
strong interaction between neighboring atomic dipole moments causes a much stronger 
alignment of the magnetic dipoles than in paramagnetic materials.   
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Figure 9.6.3 (a) Ferromagnetic domains. (b) Alignment of magnetic moments in the 
direction of the external field 0B


. 

 
The enhancement of the applied external field can be considerable, with the total 
magnetic field inside a ferromagnet 310 or 410  times greater than the applied field.   
 

 
 

Figure 9.6.4 Plot of magnetization  M  vs. external field   B0  illustrating a hysteresis curve. 
 
The permeability mκ of a ferromagnetic material is not a constant, since neither the total 

field B


 nor the magnetization M


 increases linearly with 0B


. In fact the relationship 

between M


 and 0B


 is not unique, but dependent on the previous history of the material. 

The phenomenon is known as hysteresis. The variation of M


 as a function of the 
externally applied field 0B


 is shown in Figure 9.6.4. The loop abcdef  is called a 

hysteresis curve. 
 
Moreover, in ferromagnets, the strong interaction between neighboring atomic dipole 
moments can keep those dipole moments aligned, even when the external magnet field is 
reduced to zero.  And these aligned dipoles can thus produce a strong magnetic field, all 
by themselves, without the necessity of an external magnetic field.  This is the origin of 
permanent magnets.  To see how strong such magnets can be, consider the fact that 
magnetic dipole moments of atoms typically have magnitudes of the order of 23 210  A m− ⋅ .  
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Typical atomic densities are 2910  atoms/m3.  If all these dipole moments were all aligned, 
then we would get a magnetization of order  
 
 23 2 29 3 6(10  A m )(10  atoms/m ) 10  A/mM − ⋅   (9.6.12) 
 
The magnetization corresponds to values of 0M µ=B M

 
 of order 1 tesla, or 10,000 Gauss, 

just due to the atomic currents alone.  This is how we get permanent magnets with fields 
of order 2000 Gauss.    
 
 
9.7 Summary 
 

• Biot-Savart law states that  the magnetic field dB


 at a point due to a length 
element ds  carrying a steady current I  and located at r  away is given by 

 

 0
2

ˆ
4
I dd
r

µ
π

×= s rB


,  

 
 where r = r  and 7

0 4 10 T m/Aµ π −= × ⋅  is the permeability of free space.  
 

• The magnitude of the magnetic field at a distance r away from an infinitely long 
straight wire carrying a current I is  

 

 0

2
IB
r

µ
π

= .  

 
• The magnitude of the magnetic force BF  between two straight wires of length  s  

carrying steady current of   I1  and   I2  and separated by a distance r is 
 

 
  
FB =

µ0 I1I2s
2πr

  

 
• Ampere’s law states that the line integral of d⋅B s

   around any closed loop is 
proportional to the total steady current passing through any surface that is 
bounded by the close loop, 

 
 

    

B ⋅ d

s∫ = µ0 Ienc .  

 
• The magnetic field inside a toroid which has N closely spaced of wire carrying a 

current I is given by 
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 0

2
NIB
r

µ
π

=   

 
 where r is the distance from the center of the toroid. 
 

• The magnetic field inside a solenoid which has N closely spaced of wire carrying 
current I in a length of l is given by  

 

 
  
B = µ0

N
l

I = µ0nI ,  

 
where n is the number of number of turns per unit length. 

 
• The properties of magnetic materials are as follows:  
•  

 

Materials 
Magnetic susceptibility  

mχ  
Relative permeability 

1m mκ χ= +  
Magnetic permeability 

0m mµ κ µ=  

Diamagnetic 5 910 10− −− −  1mκ <  0mµ µ<  

Paramagnetic 5 310 10− −  1mκ >  0mµ µ>  

Ferromagnetic  χ >> 1  κ >> 1  µ >> µ0  

 
 
 
9.8 Appendix 1: Magnetic Field off the Symmetry Axis of a Current Loop   
 
In Example 9.2 we calculated the magnetic field due to a circular loop of radius R lying 
in the xy-plane and carrying a steady current I, at a point P along the axis of symmetry. 
Let’s see how the same technique can be extended to calculating the field at a point off 
the axis of symmetry in the yz-plane.  
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Figure 9.8.1 Calculating the magnetic field off the symmetry axis of a current loop. 
 

 
The differential current element, as in Example 9.1, is 
 

ˆ ˆ'( sin ' cos ' )Id R dφ φ φ= − +s i j . 
 
Its position is described by ˆ ˆ' (cos ' sin ' )R φ φ= +r i j . The field point P now lies in the yz-
plane with ˆ ˆ

P y z= +r j k , as shown in Figure 9.8.1. The corresponding relative position 
vector is 
 
 ( )ˆ ˆ ˆ' cos ' sin 'P R y R zφ φ− = − + − +r = r r i j k    (9.8.1) 
 
with a magnitude  
 

 ( )22 2 2 2 2( cos ') sin ' 2 sinr R y R z R y z yRφ φ φ= = − + − + = + + −r . (9.8.2) 
 
The unit vector   ̂r  is 

    
r̂ =
r
r
=
rP −
r '

| rP −
r ' |

, 

 
pointing from    I d s  to P. The cross product ˆd ×s r  can be simplified as 
 

             
    

d s× r̂ = R dφ '(− sinφ ' î + cosφ ' ĵ) × [−Rcosφ ' î + ( y − Rsinφ ') ĵ+ z k̂]    

= R dφ '[z cosφ ' î + z sinφ ' ĵ+ R − y sinφ '( )k̂].
 (9.8.3) 

 
Using the Biot-Savart law, the contribution of the current element to the magnetic field at 
P is 
 

 
    
d

B =

µ0 I
4π

d s × r̂
r 2

=
µ0 I
4π

d s × r
r3

=
µ0 IR
4π

z cosφ ' î + z sinφ ' ĵ+ (R − y sinφ ')k̂
(R2 + y2 + z2 − 2yRsinφ ')3/ 2

dφ ' .      (9.8.4) 

 
Thus, the magnetic field at P is  
 

 
    


B(0, y, z) =

µ0 IR
4π

z cosφ ' î + z sinφ ' ĵ+ (R − y sinφ ')k̂
(R2 + y2 + z2 − 2yRsinφ ')3/ 20

2π

∫ dφ ' . (9.8.5) 

 
The x-component of B


can be readily shown to be zero, 
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Bx =

µ0 IRz
4π

cosφ 'dφ '
(R2 + y2 + z2 − 2yRsinφ ')3/ 20

2π

∫ = 0 , (9.8.6) 

 
by making a change of variable 2 2 2 2 sin 'w R y z yR φ= + + − , followed by a 
straightforward integration. One may also invoke symmetry arguments to verify that xB  
must vanish; namely, the contribution at 'φ  is cancelled by the contribution at 'π φ− . 
The y and the z components of B


 are 

 

 

  

By =
µ0 IRz

4π
sinφ 'dφ '

(R2 + y2 + z2 − 2yRsinφ ')3/ 20

2π

∫ ,

Bz =
µ0 IR
4π

(R − y sinφ ')dφ '
(R2 + y2 + z2 − 2yRsinφ ')3/ 20

2π

∫ .
 (9.8.7) 

 
These integrals are elliptic integrals that can be evaluated numerically.  
 
In the limit 0y = , the field point P is located along the z-axis, and we recover the results 
obtained in Example 9.2, 
 

 

  

By =
µ0 IRz

4π (R2 + z2 )3/ 2
sinφ 'dφ ' =

0

2π

∫ −
µ0 IRz

4π (R2 + z2 )3/ 2
cosφ '

2π
0

= 0

Bz =
µ0

4π
IR2

(R2 + z2 )3/ 2
dφ '

0

2π

∫ =
µ0

4π
2π IR2

(R2 + z2 )3/ 2
=

µ0 IR2

2(R2 + z2 )3/ 2
.

 (9.8.8) 

 
Now, let’s consider the “point-dipole” limit where   R << ( y2 + z2 )1/ 2 = r , corresponding 
to the case when the characteristic dimension of the current source is much smaller 
compared to the distance to the field point. In this limit, the denominator in the integrand 
can be expanded as 
 

 

   

(R2 + y2 + z2 − 2yRsinφ ')−3/ 2 =
1
r3 1+

R2 − 2yRsinφ '
r 2

⎡

⎣
⎢

⎤

⎦
⎥

−3/ 2

=
1
r3 1−

3
2

R2 − 2yRsinφ '
r 2

⎛

⎝⎜
⎞

⎠⎟
+…

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
.               

 (9.8.9) 

 
The y-component of the magnetic field is then  
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By ≈
µ0 I
4π

Rz
r3 1−

3
2

R2 − 2yRsinφ '
r 2

⎛

⎝⎜
⎞

⎠⎟
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
sinφ 'dφ '

0

2π

∫

=
µ0 I
4π

3R2 yz
r5 sin2φ 'dφ '

0

2π

∫ =
µ0 I
4π

3πR2 yz
r5 .

 (9.8.10) 

 
The z-component of the magnetic field is then  
 

 

  

Bz ≈
µ0 I
4π

R
r3

1−
3
2

R2 − 2yRsinφ '
r 2

⎛

⎝⎜
⎞

⎠⎟
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
(R − y sinφ ')dφ '

0

2π

∫

=
µ0 I
4π

R
r3

R −
3R3

2r 2

⎛

⎝⎜
⎞

⎠⎟
− 1−

9R2

2r 2

⎛

⎝⎜
⎞

⎠⎟
sinφ '−

3Ry2

r 2
sin2φ '

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

dφ '
0

2π

∫

=
µ0 I
4π

R
r3

2π R −
3R3

2r 2

⎛

⎝⎜
⎞

⎠⎟
−

3πRy2

r 2

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

=
µ0 I
4π

πR2

r3
2 −

3y2

r 2
+ higher order terms

⎡

⎣
⎢

⎤

⎦
⎥.

 (9.8.11) 

 
The quantity 2( )I Rπ may be identified as the magnitude of the magnetic dipole moment 

IAµ = , where 2A Rπ=  is the area of the loop. Using spherical coordinates with 
siny r θ=  and cosz r θ= , the above expressions may be rewritten as  

 

 
2

0 0
5 3

( ) 3( sin )( cos ) 3 sin cos
4 4y
I R r rB

r r
µ π µθ θ µ θ θ

π π
= = , (9.8.12) 

and  

 
2 2 2

2 20 0 0
3 2 3 3

( ) 3 sin
2 (2 3sin ) (3cos 1)

4 4 4z
I R rB
r r r r

µ µ µπ θ µ µθ θ
π π π

⎛ ⎞
= − = − = −⎜ ⎟

⎝ ⎠
. (9.8.13) 

 
Thus, we see that the magnetic field at a point  r >> R  due to a current ring of radius R 
may be approximated by a small magnetic dipole moment placed at the origin (Figure 
9.8.2).  
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Figure 9.8.2 Magnetic dipole moment    


µ = µk̂  

 
The magnetic field lines due to a current loop and a dipole moment (small bar magnet) 
are depicted in Figure 9.8.3.  
 

  
 

Figure 9.8.3 Magnetic field lines due to (a) a current loop, and (b) a small bar magnet. 
 
The magnetic field at P can also be written in spherical coordinates as 
 
     


B = Br r̂ + Bθ θ̂ . (9.8.14) 

 
The spherical components rB  and Bθ  are related to the Cartesian components yB  and zB  
by 
 sin cos ,         cos sinr y z y zB B B B B Bθθ θ θ θ= + = − . (9.8.15) 
 
In addition, we have, for the unit vectors,  
 
   ̂r = sinθ ĵ+ cosθ k̂,       θ̂ = cosθ ĵ− sinθ k̂ . (9.8.16) 
 
Using the above relations, the spherical components may be written as 
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Br =

µ0 IR2 cosθ
4π

dφ '
(R2 + r 2 − 2rRsinθ sinφ ')3/ 20

2π

∫ , (9.8.17) 

and 
 

 
  
Bθ (r,θ) =

µ0 IR
4π

(r sinφ '− Rsinθ)dφ '
(R2 + r 2 − 2rRsinθ sinφ ')3/ 20

2π

∫ . (9.8.18) 

 
In the limit where  R < r , we obtain 
 

 
2 22

0 0 0
3 3 30

cos 2 cos 2 cos
'

4 4 4r
IR IRB d
r r r

πµ θ µ µπ θ µ θφ
π π π

≈ = =∫ , (9.8.19) 

and  

 

  

Bθ =
µ0 IR
4π

(r sinφ '− Rsinθ)dφ '
(R2 + r 2 − 2rRsinθ sinφ ')3/ 20

2π

∫

≈
µ0 IR
4πr3 −Rsinθ 1−

3R2

2r 2

⎛

⎝⎜
⎞

⎠⎟
+ r − 3R2

2r
−

3R2 sin2θ
2r

⎛

⎝⎜
⎞

⎠⎟
sinφ '+ 3Rsinθ sin2φ '

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥0

2π

∫ dφ '

≈
µ0 IR
4πr3 −2πRsinθ + 3πRsinθ( ) = µ0 (IπR2 )sinθ

4πr3

=
µ0

4π
µ sinθ

r3 .

 

  (9.8.20) 
 
9.9 Appendix 2: Helmholtz Coils 
 
Consider two N-turn circular coils of radius R, each perpendicular to the axis of 
symmetry, with their centers located at / 2z l= ± . There is a steady current I in the same 
direction around each coil, as shown in Figure 9.9.1. Let’s find the magnetic field B


 on 

the axis at a distance z from the center of one coil. 
 

 
 

Figure 9.9.1 Helmholtz coils 
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Let’s find the magnetic field on the  z -axis at a point, a distance / 2z l−  away from the 
center of one ring and a distance / 2z l+  from the center of the other ring. Using the 
result shown in Example 9.2 for a single coil and applying the superposition principle, the 
magnetic field at ( ,0)P z  due to the two coils can be obtained as 
 

 
2

0
top bottom 2 2 3/ 2 2 2 3/ 2

1 1
2 [( / 2) ] [( / 2) ]z
NIRB B B

z l R z l R
µ ⎡ ⎤

= + = +⎢ ⎥− + + +⎣ ⎦
. (9.9.1) 

 
The magnetic field strength at 0z =  and l R=  is given by 
 

 
  
B0 =

µ0NI
(5 / 4)3/ 2 R

. (9.9.2) 

 
A plot of 0/zB B  as a function of   z / R  is depicted in Figure 9.9.2.  
 

 
 

Figure 9.9.2 Plot of magnetic field as a function of /z R  for Helmholtz coils. 
 
Let’s analyze the properties of zB  in more detail. Differentiating zB with respect to z, we 
obtain 

 
  

dBz

dz
=
µ0 NIR2

2
−

3(z − l / 2)
[(z − l / 2)2 + R2 ]5/ 2 −

3(z + l / 2)
[(z + l / 2)2 + R2 ]5/ 2

⎧
⎨
⎩

⎫
⎬
⎭

. (9.9.3) 

 
One may readily show that at the midpoint, 0z = , the first derivative vanishes, 
 

 
0

0
z

dB
dz =

= . (9.9.4) 

The second derivative is  
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d 2 B
dz2 =

Nµ0 IR2

2
−

3
[(z − l / 2)2 + R2 ]5/ 2 +

15(z − l / 2)2

[(z − l / 2)2 + R2 ]7 / 2

⎧
⎨
⎪

⎩⎪

                             −
3

[(z + l / 2)2 + R2 ]5/ 2 +
15(z + l / 2)2

[(z + l / 2)2 + R2 ]7 / 2

⎫
⎬
⎪

⎭⎪
.
 

  (9.9.5) 
At the midpoint 0z = , the Eq. (9.9.5) simplifies to 
 

 

  

d 2B
dz2

z=0

=
µ0NI 2R2

2
− 6

[(l / 2)2 + R2]5/2 +
15l2

2[(l / 2)2 + R2]7/2

⎧
⎨
⎩

⎫
⎬
⎭

= −
µ0NI 2R2

2
6(R2 − l2 )

[(l / 2)2 + R2]7/2 .

 (9.9.6) 

 
When the distance between centers of the two coils is equal to the radius of the coil, 
l R= , the second derivative of zB  vanishes at 0z =  . A configuration with l R=  is 
known as Helmholtz coils.  
 
For small z, we may make a Taylor-series expansion of ( )zB z  about 0z = , 
 

 
   
Bz (z) = Bz (0) +

dBz

dz
(0)z + 1

2!
d 2 Bz

dz2 (0)z2 +. (9.9.7) 

  
The fact that the first two derivatives vanish at 0z =  indicates that the magnetic field is 
fairly uniform in the small z region. It turns out that the third derivative vanishes at 0z =  
as well.  
 
Recall that the force experienced by a dipole in a magnetic field is     


FB = ∇(


µ ⋅

B) . If we 

place a magnetic dipole     

µ = µz k̂  at 0z = , the magnetic force acting on the dipole is  

 

 
    


FB = ∇(µz Bz ) = µz

dBz

dz
k̂ , (9.9.8) 

 
which will be very small because the magnetic field is nearly uniform there.  
 
 
9.9.1 Magnetic Field of the Helmholtz Coils Movie 
 
The animation in Figure 9.9.3(a) shows the magnetic field of the Helmholtz coils. In this 
configuration the currents in the top and bottom coils are in the same direction, with their 
dipole moments aligned. The magnetic fields from the two coils add up to create a net 
field that is nearly uniform at the center of the coils. Since the distance between the coils 
is equal to the radius of the coils and remains unchanged, the force of attraction between 
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them creates a tension, and is illustrated by field lines stretching out to enclose both coils. 
When the distance between the coils is not fixed, as in the animation depicted in Figure 
9.9.3(b), the two coils move toward each other due to their force of attraction. In this 
animation, the top loop has only half the current as the bottom loop.  The field 
configuration is shown using the “iron filings” representation. 
 
 

    
          (a)   http://youtu.be/DNbSICRSbeU             (b)  http://youtu.be/rUL71B6gGd8  
 
Figure 9.9.3 (a) Magnetic field of the Helmholtz coils where the distance between the 
coils is equal to the radius of the coil. (b) Two co-axial wire loops carrying current in the 
same sense are attracted to each other. 
 
Next, let’s consider the case where the currents in the loop are in the opposite directions, 
as shown in Figure 9.9.4. 

 
  

Figure 9.9.4 Two circular loops carrying currents in the opposite directions. 
 
Again, by superposition principle, the magnetic field at a point (0,0, )P z  with 0z >  is 
 

 
2

0
1 2 2 2 3/ 2 2 2 3/ 2

1 1
2 [( / 2) ] [( / 2) ]z z z
NIRB B B

z l R z l R
µ ⎡ ⎤

= + = −⎢ ⎥− + + +⎣ ⎦
. (9.9.9) 

 
A plot of 0/zB B  with 0 0 / 2B NI Rµ=  and l R=  is depicted in Figure 9.9.5.  

https://youtu.be/9wP-kMevOYE
https://youtu.be/9wP-kMevOYE
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Figure 9.9.5 Plot of magnetic field as a function of /z R  for anti-Helmholtz coils. 
 
Differentiating zB with respect to z, we obtain 
 

 
  

dBz

dz
=
µ0 NIR2

2
−

3(z − l / 2)
[(z − l / 2)2 + R2 ]5/ 2 +

3(z + l / 2)
[(z + l / 2)2 + R2 ]5/ 2

⎧
⎨
⎩

⎫
⎬
⎭

. (9.9.10) 

 
At the midpoint, 0z = , we have  
 

 
  

dBz

dz
(0) =

µ0 NIR2

2
3l

[(l / 2)2 + R2 ]5/ 2 ≠ 0 . (9.9.11) 

 
Thus, a magnetic dipole     


µ = µz k̂  placed at 0z =  will experience a net force given by 

 

 
    


FB = ∇(


µ ⋅

B) = ∇(µz Bz ) = µz

dBz (0)
dz

k̂ =
µzµ0 NIR2

2
3l

[(l / 2)2 + R2 ]5/ 2 k̂    . (9.9.12) 

 
For l R= , the above expression simplifies to  
 

 
    


FB =

3µzµ0 NI
2(5 / 4)5/ 2 R2 k̂ . (9.9.13) 

 
 
9.9.2 Magnetic Field of Two Coils Carrying Opposite Currents Movie 
 
The animation depicted in Figure 9.9.6 shows the magnetic field of two coils like the 
Helmholtz coils but with currents in the top and bottom coils in opposite directions. In 
this configuration, the magnetic dipole moments associated with each coil are anti-
parallel.  
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         (a)  http://youtu.be/SD4fq8wPee0                (b)  http://youtu.be/9Ug-VxtCsSw 
 
Figure 9.9.6 (a) Magnetic field due to coils carrying currents in the opposite directions.  
(b) Two co-axial wire loops carrying current in the opposite sense repel each other. The 
field configurations here are shown using the “iron filings” representation.  The bottom 
wire loop carries twice the amount of current as the top wire loop.   
 
At the center of the coils along the axis of symmetry, the magnetic field is zero. With the 
distance between the two coils fixed, the repulsive force results in a pressure between 
them. This is illustrated by field lines that are compressed along the central horizontal 
axis between the coils. 
 
9.9.3 Forces Between Coaxial Current-Carrying Wires Movie 
 

   http://youtu.be/2TWYhylF4K4 
 

Figure 9.9.7   A magnet in the TeachSpin™  Magnetic Force apparatus when the current 
in the top coil is counterclockwise as seen from the top. 
 
Figure 9.9.7 shows the force of repulsion between the magnetic field of a permanent 
magnet and the field of a current-carrying ring in the TeachSpin™ Magnetic Force 
apparatus.  The magnet is constrained to have its north magnetic pole pointing downward, 
and the current in the top coil of the Magnetic Force apparatus is moving clockwise as 
seen from above.  The net result is a repulsion of the magnet when the current in this 
direction is increased.  The visualization shows the stresses transmitted by the fields to 
the magnet when the current in the upper coil is increased.   

https://youtu.be/0JwZ1AGZkqI
https://youtu.be/uPfNfVcvgd8
https://youtu.be/W13u-gtNSbM
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9.9.4 Magnet Oscillating Between Two Coils Movie 
 
Figure 9.9.8 illustrates an animation in which the magnetic field of a permanent magnet 
suspended by a spring in the TeachSpin™ apparatus (see TeachSpin visualization), plus 
the magnetic field due to current in the two coils (here we see a "cutaway" cross-section 
of the apparatus).  
 

   http://youtu.be/poChtIhICuQ 
 

Figure 9.9.8 Magnet oscillating between two coils. 
 
The magnet is fixed so that its north pole points upward, and the current in the two coils 
is sinusoidal and 180 degrees out of phase. When the effective dipole moment of the top 
coil points upwards, the dipole moment of the bottom coil points downwards. Thus, the 
magnet is attracted to the upper coil and repelled by the lower coil, causing it to move 
upwards. When the conditions are reversed during the second half of the cycle, the 
magnet moves downwards. 
 
This process can also be described in terms of tension along, and pressure perpendicular 
to, the field lines of the resulting field. When the dipole moment of one of the coils is 
aligned with that of the magnet, there is a tension along the field lines as they attempt to 
"connect" the coil and magnet. Conversely, when their moments are anti-aligned, there is 
a pressure perpendicular to the field lines as they try to keep the coil and magnet apart. 
 
9.9.5 Magnet Suspended Between Two Coils Movie 
 
Figure 9.9.9 illustrates an animation in which the magnetic field of a permanent magnet 
suspended by a spring in the TeachSpin™ apparatus, plus the magnetic field due to 
current in the two coils (here we see a "cutaway" cross-section of the apparatus). The 
magnet is fixed so that its north pole points upward, and the current in the two coils is 
sinusoidal and in phase. When the effective dipole moment of the top coil points upwards, 
the dipole moment of the bottom coil points upward as well. Thus, the magnet is attracted 
to both coils, and as a result feels no net force (although it does feel a torque, not shown 
here since the direction of the magnet is fixed to point upwards). When the dipole 

https://youtu.be/4jwK5lDIMFk
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moments are reversed during the second half of the cycle, the magnet is repelled by both 
coils, again resulting in no net force. 
 
This process can also be described in terms of tension along, and pressure perpendicular 
to, the field lines of the resulting field. When the dipole moment of the coils is aligned 
with that of the magnet, there is a tension along the field lines as they are "pulled" from 
both sides. Conversely, when their moments are anti-aligned, there is a pressure 
perpendicular to the field lines as they are "squeezed" from both sides. 
 

     http://youtu.be/mHX7v0mgTak 
 
Figure 9.9.9 Magnet suspended between two coils carrying currents in the same direction.   

 
 
 

9.10 Problem-Solving Strategies 
 
In this chapter, we have seen how Biot-Savart and Ampere’s laws can be used to 
calculate magnetic field due to a current source.  
 
9.10.1 Biot-Savart Law: 
 
The law states that the magnetic field at a point P due to a length element ds  carrying a 
steady current I located at r  away is given by 
 

0 0
2 3

ˆ
4 4
I Id dd
r r

µ µ
π π

× ×= =s r s rB
  

 

 
The calculation of the magnetic field may be carried out as follows: 
 
(1) Source point: Choose an appropriate coordinate system and write down an expression 
for the differential current element I ds , and the vector 'r  describing the position of 
I ds . The magnitude     r ' = | r ' |  is the distance between I ds  and the origin. Variables with 
a “prime” are used for the source point.  
 

https://youtu.be/UknOILMjX9w
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(2) Field point: The field point P is the point in space where we are trying to calculate the 
magnetic field due to the current. Using the same coordinate system, write down the 
position vector Pr

  for the field point P. The quantity     rP = | rP |  is the distance between the 
origin and P. 
 
(3) Relative position vector: The relative position between the source point and the field 
point is characterized by the relative position vector 'P= −r r r   . The corresponding unit 
vector is  

 'ˆ
| ' |
P

Pr
−= =
−

r rrr
r r

 
  , 

 
where     r = | r |= | rP −

r ' |  is the distance between the source and the field point P. 
 
(4) Calculate the vector product ˆd ×s r  or d ×s r  . The resultant vector gives the direction 
of the magnetic field B


, according to the Biot-Savart law.  

 
(5) Substitute the expressions obtained to dB


 and simplify as much as possible. 

 
(6) Complete the integration to obtain B


 if possible. The size or the geometry of the 

system is reflected in the integration limits. Change of variables sometimes may help to 
complete the integration.   
 
Below we illustrate how these steps are executed for a current-carrying wire of length L 
and a loop of radius R.   
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Current distribution Finite wire of length L Circular loop of radius R 

Figure 

 
 

(1) Source point 
ˆ ' '

ˆ( '/ ') ' '  

x

d d dx dx dx

=

= =

r i

s r i



   
ˆ ˆ' (cos ' sin ' )

ˆ ˆ( '/ ') ' '( sin ' cos ' )

R

d d d d Rd

φ φ

φ φ φ φ φ

= +

= = − +

r i j

s r i j



 
 

(2) Field point P ˆ
P y=r j

 ˆ
P z=r k

 

(3) Relative position 
vector 

'P= −r r r  
 

2 2

2 2

ˆ ˆ'  

| | '
ˆ ˆ'ˆ
'

y x

r x y

y x

x y

= −

= = +

−=
+

r j i

r

j ir



  2 2

2 2

ˆ ˆ ˆcos ' sin '

| |
ˆ ˆ ˆcos ' sin 'ˆ

R R z

r R z

R R z
R z

φ φ

φ φ

= − − +

= = +

− − +=
+

r i j k

r

i j kr



  

(4) The cross product 
ˆd ×s r  2 2

ˆ
ˆ y dx

d
y x

′
× =

′+
ks r  

2 2

ˆ ˆ ˆ'( cos ' sin ' )ˆ Rd z z Rd
R z

φ φ φ+ +× =
+

i j ks r  

(5) Rewrite dB


 0
2 2 3/ 2

ˆ

4 ( )
I y dx

d
y x

µ
π

′
=

′+
kB


 0

2 2 3/ 2

ˆ ˆ ˆ'( cos ' sin ' )
4 ( )
I R d z z Rd

R z
µ φ φ φ
π

+ +=
+
i j kB

  

(6) Integrate to get 

B


 

/ 20
2 2 3/ 2/ 2

0
2 2

0
0

'
4 ( ' )

4 ( / 2)

x

y

L

z L

B
B

Iy dx
B

y x
I L

y y L

µ
π

µ
π

−

=
=

=
+

=
+

∫  

2
0
2 2 3/ 2 0

2
0
2 2 3/ 2 0

2 22
0 0
2 2 3/ 2 2 2 3/ 20

cos ' ' 0   
4 ( )

sin ' ' 0
4 ( )

'
4 ( ) 2( )

x

y

z

IRz
B d

R z
IRz

B d
R z

IR IR
B d

R z R z

π

π

π

µ φ φ
π

µ φ φ
π

µ µφ
π

= =
+

= =
+

= =
+ +

∫

∫

∫

 

 
 
 
9.10.2 Ampere’s law: 
 
Ampere’s law states that the line integral of d⋅B s

   around any closed loop is proportional 
to the total current passing through any surface that is bounded by the closed loop, 

 

    

B ⋅ d

s∫ = µ0 Ienc . 
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To apply Ampere’s law to calculate the magnetic field, we use the following procedure: 
 
(1) Draw an Amperian loop using symmetry arguments.  
 
(2) Find the current enclosed by the Amperian loop. 
 
(3) Calculate the line integral    


B ⋅d

s∫  around the closed loop. 

 
(4) Equate    


B ⋅d

s∫  with 0 encIµ and solve for B


. 

 
Below we summarize how the methodology can be applied to calculate the magnetic field 
for an infinite wire, an ideal solenoid and a toroid. 
 

System Infinite wire Ideal solenoid Toroid 

Figure  

  

(1) Draw the Amperian 
loop 

 
  

(2) Find the current 
enclosed by the 
Amperian loop 

encI I=  encI NI=  encI NI=  

(3) Calculate    

B ⋅d

s∫  

along the loop     

B ⋅d

s∫ = B(2πr)     


B ⋅d

s∫ = Bl  

    

B ⋅d

s∫ = B(2πr)  

(4) Equate 0 encIµ with 

   

B ⋅d

s∫ to obtain B


 

0

2
IB
r

µ
π

=  0
0

NIB nI
l

µ µ= =  0

2
NIB
r

µ
π

=  
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9.11 Solved Problems 
 
9.11.1 Magnetic Field of a Straight Wire 
 
Consider a straight wire of length L  carrying a current I  along the  positive x-direction, 
as shown in Figure 9.11.1 (ignore the return path of the current or the source for the 
current.) What is the magnetic field at an arbitrary point P on the xy-plane?  
 

 
 

Figure 9.11.1 A finite straight wire carrying a current I.  
 
Solution: The problem is very similar to Example 9.1. However, now the field point is an 
arbitrary point in the xy-plane. We solve the problem using the methodology outlined in 
Section 9.10. 
 
(1) Source point: From Figure 9.10.1, we see that the infinitesimal length dx′  described 
by the position vector ˆ' 'x=r i  constitutes a current source ˆ( )I d Idx′=s i . 
 
(2) Field point:  As can be seen from Figure 9.10.1, the position vector for the field point 
P is ˆ ˆx y= +r i j . 
 
(3) Relative position vector: The relative position vector from the source to P is 

ˆ ˆ' ( ')P x x y− = − +r = r r i j   , with magnitude 2 2 1 2| | | ' | [( ) ]Pr x x y′= = − = − +r r r   . The 
corresponding unit vector is 
 

2 2 1 2

ˆ ˆ' ( )ˆ
| ' | [( ) ]
P

P

x x y
r x x y

′− − += = =
′− − +

r rr i jr
r r

 
  . 

 
(4) Simplifying the vector product:  The vector product d ×s r   can be simplified as  
 
 ˆ ˆ ˆ ˆ( ' ) [( ') ] 'dx x x y y dx× − + =i i j k , 
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where we have used ˆ ˆ× =i i 0


 and ˆ ˆ ˆ× =i j k . 

 
(5) Writing down dB


: Using the Biot-Savart law, the infinitesimal contribution due to 

   I d s  is 

 
    
d

B =

µ0 I
4π

d s × r̂
r 2 =

µ0 I
4π

d s × r
r3 =

µ0 I
4π

y d ′x
[(x − ′x )2 + y2 ]3 2 k̂ . (9.11.1) 

 
The direction of the magnetic field is in the   +k̂  direction.  
 
(6) Carrying out the integration to obtain   


B : The total magnetic field at P can then be 

obtained by integrating over the entire length of the wire, 
 

 

    


B = d


B =

wire
∫

µ0 Iy d ′x
4π[(x − ′x )2 + y2 ]3 2 k̂

− L / 2

L / 2

∫ = −
µ0 I
4π y

(x − ′x )

(x − ′x )2 + y2
− L / 2

L / 2

k̂

= −
µ0 I
4π y

(x − L / 2)

(x − L / 2)2 + y2
−

(x + L / 2)

(x + L / 2)2 + y2

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
k̂.

 (9.11.2) 

 
Let’s consider the following limits: 
 
(i)   x = 0 : In this case, the field point P is at   (x, y) = (0, y)  on the y-axis. The magnetic 
field becomes  

 

    


B = −

µ0 I
4π y

−L / 2

(−L / 2)2 + y2
−

+L / 2

(+L / 2)2 + y2

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
k̂

=
µ0 I
2π y

L / 2

(L / 2)2 + y2
k̂ =

µ0 I
2π y

cosθ k̂,

  

  (9.11.3) 
in agreement with Eq. (9.1.6) 
 
 
(ii)   L >> x, y  (infinite length limit): This gives back the expected infinite-length result: 
 

 0 0/ 2 / 2 ˆ ˆ
4 / 2 / 2 2
I IL L
y L L y

µ µ
π π

− +⎡ ⎤= − − =⎢ ⎥⎣ ⎦
B k k


. (9.11.4) 

 
If we use cylindrical coordinates with the wire pointing along the +z-axis then the 
magnetic field is given by the expression 
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
B =

µ0 I
2πr

φ̂ , (9.11.5) 

 
where  φ̂  is the tangential unit vector and the field point P is a distance r  away from the 
wire.  
 
 
9.11.2 Current-Carrying Arc 
 
Consider the current-carrying loop formed of radial lines and segments of circles whose 
centers are at point P as shown below. Find the magnetic field B


 at P. 

 

 
 

Figure 9.11.2 Current-carrying arc 
 
 
Solution: According to the Biot-Savart law, the magnitude of the magnetic field due to a 
differential current-carrying element    I d s  is given by  
 

 0 0 0
2 2

ˆ ' '
4 4 4

dI I Ir ddB d
r r r

µ µ µθ θ
π π π

×
= = =

s r
. (9.11.6) 

 
For the outer arc, we have 

 0 0
outer 0

'
4 4
I IB d
b b

θµ µ θθ
π π

= =∫ . (9.11.7) 

 
The direction of  outerB


 is determined by the vector product ˆd ×s r , which points out of 

the plane of the figure. Similarly, for the inner arc, we have 
 

 0 0
inner 0

'
4 4
I IB d
a a

θµ µ θθ
π π

= =∫ . (9.11.8) 

 
For innerB


, ˆd ×s r  points into the plane of the figure. Thus, the total magnitude of 
magnetic field is 
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
B =

Binner +


Bouter =

µ0 Iθ
4π

1
a
−

1
b

⎛
⎝⎜

⎞
⎠⎟

k̂  . (9.11.9) 

 
where   k̂  is a unit vector pointing into the plane of the figure. 
 
9.11.3 Rectangular Current Loop 

Determine the magnetic field (in terms of I, a and b) at the origin O due to the current 
loop shown in Figure 9.11.3. 

 

Figure 9.11.3 Rectangular current loop 

Solution: For a finite wire carrying a current I, the contribution to the magnetic field at a 
point P is given by Eq. (9.1.5), 

  
B =

µ0 I
4πr

(cosθ1 + cosθ2 ) , 

where 1 2 and θ θ  are the angles that parameterize the length of the wire. 

 
 
To obtain the magnetic field at O, we make use of the above formula. The contributions 
can be divided into three parts: 
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(i) Consider the left segment of the wire that extends from ( , ) ( , )x y a= − +∞  to ( , )a d− + . 
The angles which parameterize this segment give 1cos 1θ =  (where 1 0θ = ) and 

2 2
2cos /b b aθ = − + . Therefore, 

 

 ( )0 0
1 1 2 2 2

cos cos 1
4 4
I I bB
a a b a

µ µθ θ
π π

⎛ ⎞
= + = −⎜ ⎟

+⎝ ⎠
. (9.11.10) 

 
The direction of 1B


 is out of page, or ˆ+k . 

 
(ii) Next, we consider the segment that extends from ( , ) ( , )x y a b= − +  to ( , )a b+ + . Again, 
the (cosine of the) angles are given by 
 

 2 1 2 2
cos cos

a
a b

θ θ= =
+

. (9.11.11) 

 
The magnetic field strength is then 
 

 0 0
2 2 2 2 2 2 24 2

I Iaa aB
b a b a b b a b

µ µ
π π

⎛ ⎞
= + =⎜ ⎟

+ + +⎝ ⎠
. (9.11.12) 

 
The direction of 2B


 is into the page, or ˆ−k . 

 
(iii) The third segment of the wire runs from ( , ) ( , )x y a b= + +  to ( , )a+ +∞ . One may 
readily show that it gives the same contribution as the first one: 
 
 3 1B B=  (9.11.13) 
 
The direction of 3B


 is again out of page, or ˆ+k . 

 
The magnetic field is then the sum 
 

 

    


B =

B1 +


B2 +


B3 = 2


B1 +


B2 =

µ0 I
2πa

1−
b

(a2 + b2 )1/ 2

⎛
⎝⎜

⎞
⎠⎟

k̂ −
µ0 Ia

2πb(a2 + b2 )1/ 2 k̂

=
µ0 I

2πab(a2 + b2 )1/ 2 (b(a2 + b2 )1/ 2 − b2 − a2 )k̂.
(9.11.14) 

 
In the limit 0a→ , the horizontal segment is absent, and the two semi-infinite wires 
carrying currents in the opposite direction overlap each other and their contributions 
completely cancel. Thus, the magnetic field vanishes in this limit. 
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9.11.4 Hairpin-Shaped Current-Carrying Wire 
 
An infinitely long current-carrying wire is bent into a hairpin-like shape shown in Figure 
9.11.4. Find the magnetic field at the point P that lies at the center of the half-circle. 
 

 
 

Figure 9.11.4 Hairpin-shaped current-carrying wire 
 
 
Solution: Again we break the wire into three parts: two semi-infinite plus a semi-circular 
segments.  
 
(i) Let P be located at the origin in the xy plane. The first semi-infinite segment then 
extends from ( , ) ( , )x y r= −∞ −  to (0, )r− . The two angles which parameterize this 
segment are characterized by 1cos 1θ =  (where 1 0θ = ) and  cosθ2 = 0  (where  θ2 = π / 2 ). 
Therefore, its contribution to the magnetic field at P is 
 

 
  
B1 =

µ0 I
4πr

(cosθ1 + cosθ2 ) =
µ0 I
4πr

(1+ 0) =
µ0 I
4πr

. (9.11.15) 

 
The direction of 1B


 is out of page, or ˆ+k . 

   
(ii) For the semi-circular arc of radius r, we make use of the Biot-Savart law: 
 

 0
2

ˆ
4
I d

r
µ
π

×= ∫
s rB


, (9.11.16) 

and obtain 

 0 0
2 204 4

I IrdB
r r

πµ µθ
π

= =∫ . (9.11.17) 

 
The direction of 2B


 is out of page, or ˆ+k . 

 
(iii) The third segment of the wire runs from ( , ) (0, )x y r= +  to ( , )r−∞ + . One may 
readily show that it gives the same contribution as the first one: 
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 0
3 1 4

IB B
r

µ
π

= = . (9.11.18) 

 
The direction of 3B


 is again out of page, or ˆ+k . 

 
The total magnitude of the magnetic field is the sum 
 

 0 0 0
1 2 3 1 2

ˆ ˆ ˆ2 (2 )
2 4 4
I I I
r r r

µ µ µ π
π π

= + + = + = + = +B B B B B B k k k
     

. (9.11.19) 

 
Notice that the contribution from the two semi-infinite wires is equal to that due to an 
infinite wire, 

 0
1 3 1

ˆ2
2
I
r

µ
π

+ = =B B B k
  

. (9.11.20) 

 
9.11.5 Two Infinitely Long Wires 
 
Consider two infinitely long wires carrying currents are in the  negative x-direction. 
 

 
 

Figure 9.11.5 Two infinitely long wires 
 
(a) Plot the magnetic field pattern in the yz-plane. 
 
(b) Find the distance d along the z-axis where the magnetic field is a maximum. 
 
Solutions: 
 
(a) The magnetic field lines are shown in Figure 9.11.6. Notice that the directions of both 
currents are into the page.  
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Figure 9.11.6 Magnetic field lines of two wires carrying current in the same direction. 
 
 
(b) The magnetic field at (0, 0, z) due to wire 1 on the left is, using Ampere’s law, 
 

 0 0
1 2 22 2

I IB
r a z

µ µ
π π

= =
+

. (9.11.21) 

 
Because the current is in the negative x-direction, the magnetic field points in the 
direction of the vector product  
 
    − î × r̂1 = − î × (cosθ  ̂j+ sinθ  k̂) = sinθ  ̂j− cosθ  k̂ .            (9.11.22) 
 
Thus, we have  

   
    


B1 =

µ0 I

2π a2 + z2
(sinθ  ̂j− cosθ  k̂) .              (9.11.23) 

 
For wire 2 on the right, the magnetic field strength is the same as the left one: 1 2B B= . 
However, its direction is given by  
 
   − î × r̂2 = − î × (−cosθ  ̂j+ sinθ  k̂) = sinθ  ̂j + cosθ  k̂ . (9.11.24) 
 
Adding up the contributions from both wires, the z-components cancel (as required by 
symmetry), and we arrive at 
 

 0 0
1 2 2 22 2

sin ˆ ˆ
( )

I Iz
a za z

µ θ µ
ππ

+ = =
++

B = B B j j
  

. (9.11.25) 
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Figure 9.11.7 Superposition of magnetic fields due to two current sources. 
 
To locate the maximum of B, we set / 0dB dz = and find 
 

 
  

dB
dz

=
µ0 I
π

1
a2 + z2 −

2z2

(a2 + z2 )2

⎛

⎝⎜
⎞

⎠⎟
=
µ0 I
π

a2 − z2

(a2 + z2 )2 = 0 . (9.11.26) 

 
The first derivative is zero when 
 z a= . (9.11.27) 
 
Thus, at z a= , the magnetic field strength is a maximum, with a magnitude  
 

 0
max 2

IB
a

µ
π

= . (9.11.28) 

 
9.11.6 Non-Uniform Current Density 
 
Consider an infinitely long, cylindrical conductor of radius R carrying a current I with a 
non-uniform current density 
 J rα=  (9.11.29) 
 
where α  is a constant. Find the magnetic field everywhere. 
 

 
 

Figure 9.11.8 Non-uniform current density. 
 
Solution: The problem can be solved by using Ampere’s law, 
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
B ⋅ d

s∫ = µ0 Ienc , (9.11.30) 

 
where the enclosed current Ienc is given by 
 
 

    
Ienc =


J ⋅ d

A∫ = (αr ')∫ (2πr 'dr ') . (9.11.31) 

 
(a) For r R< , the enclosed current is  
 

 
3

2
enc 0

22 ' '
3

r rI r dr παπα= =∫ . (9.11.32) 

 
Applying Ampere’s law, the magnetic field at P1 is given by  
   

 
  
B1(2πr) =

2µ0παr3

3
. (9.11.33) 

The magnetic field strength is  

 
  
B1 =

αµ0

3
r 2 , r < R . (9.11.34) 

 
The direction of the magnetic field 1B


 is tangential to the Amperian loop that encloses 

the current.  
 
(b) For r R> , the enclosed current is  
 

 
3

2
enc 0

22 ' '
3

R RI r dr παπα= =∫ , (9.11.35) 

which yields 

 
  
B2 (2πr) =

2µ0παR3

3
. (9.11.36) 

 
Thus, the magnetic field at a point P2 outside the conductor is 
 

 
  
B2 =

αµ0 R3

3r
, r > R . (9.11.37) 

 
A plot of B as a function of r is shown in Figure 9.11.9. 
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Figure 9.11.9 The magnetic field as a function of distance away from the conductor. 
 
 
9.11.7 Thin Strip of Metal  
 
Consider an infinitely long, thin strip of metal of width w lying in the xy plane. The strip 
carries a current I along the +x-direction, as shown in Figure 9.11.10. Find the magnetic 
field at a point P that lies is in the plane of the strip and at a distance s away from it. 
 

 
 

Figure 9.11.10 Thin strip of metal. 
 
Solution: Consider a thin strip of width dr parallel to the direction of the current and at a 
distance r away from P, as shown in Figure 9.11.11. The amount of current carried by 
this differential element is 

 
 
dI = I dr

w
. (9.11.38) 

 
Using Ampere’s law, we see that the strip’s contribution to the magnetic field at P is 
given by 
 0 enc 0(2 ) ( )dB r I dIπ µ µ= = . (9.11.39) 
 
The contribution to the magnetic field strength is 
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dB =

µ0 dI
2πr

=
µ0

2πr
I dr
w

. (9.11.40) 

 

 
 

Figure 9.11.11 A thin strip with thickness dr carrying a steady current I . 
 
Integrating this expression, we obtain  
 

 
  
B =

µ0 I
2πw

dr
rs

s+w

∫ =
µ0 I
2πw

ln
s + w

s
⎛
⎝⎜

⎞
⎠⎟

. (9.11.41) 

 
Using the right-hand rule, the direction of the magnetic field can be shown to point in the  
positive z-direction,   

 0 ˆln 1  
2
I w
w s

µ
π

⎛ ⎞= +⎜ ⎟⎝ ⎠
B k


. (9.11.42) 

 
In the limit of vanishing width, w s , ln(1 / ) /w s w s+ ≈ , and the above expression 
becomes  

 0 ˆ 
2
I
s

µ
π

=B k


, (9.11.43) 

 
corresponding to the magnetic field of an infinitely long thin straight wire. 
 
 
9.11.8 Two Semi-Infinite Wires 
 
A wire carrying current I directed down the y-axis to the origin, thence out to infinity 
along the positive x-axis. Show that the magnetic field in the quadrant with , 0x y >  of 
the xy-plane is given by 
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 0
2 2 2 2

1 1
4z
I x y

B
x y y x y x x y

µ
π

⎛ ⎞
⎜ ⎟= + + +⎜ ⎟+ +⎝ ⎠

. (9.11.44) 

 
Solution: Let ( , )P x y  be a point in the first quadrant at a distance 1r  from a point 
(0, ')y on the y-axis and distance 2r  from ( ',0)x  on the x-axis.  
 

 
 

Figure 9.11.12 Two semi-infinite wires. 
 
Using the Biot-Savart law, the magnetic field at P is given by 
 

 0 0 01 1 2 2
2 2 2

1 2wire wire 

ˆ ˆˆ
4 4 4y x

I I Id dd
d

r r r
µ µ µ
π π π

× ××= = = +∫ ∫ ∫ ∫
s r s rs rB B
  

. (9.11.45) 

 
Let’s analyze each segment separately.  
 
(i) Along the y-axis, consider a differential element 1

ˆ'd dy= −s j  that is located at a 

distance 1
ˆ ˆ( ')x y y= + −r i j  from P. This yields 

 
 1 1

ˆ ˆ ˆ ˆ( ' ) [ ( ') ] 'd dy x y y x dy× = − × + − =s r j i j k  . (9.11.46) 
 
(ii) Similarly, along the x-axis, we have 2

ˆ'd dx=s i  and 2
ˆ ˆ( ')x x y= − +r i j  and so 

 
 2 2

ˆ'd y dx× =s r k  . (9.11.47) 
 
Thus, we see that the magnetic field at P points in the positive z-direction. Using the 
above results and   r1 = [x2 + ( y − y ')2 ]1/ 2  and   r2 = [(x − ′x )2 + y2 ]1/ 2 , we obtain 
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 0 0
2 2 3/ 2 2 2 3/ 20 0

' '
4 [ ( ') ] 4 [ ( ') ]z
I Ix dy y dx

B
x y y y x x

µ µ
π π

∞ ∞
= +

+ − + −∫ ∫ . (9.11.48) 

 
The integrals can be readily evaluated using  
 

 2 2 3/ 2 2 20

1
[ ( ) ]

bds a
b a s b b a b

∞
= +

+ − +∫ . (9.11.49) 

  
The final expression for the magnetic field is given by 
 

 0
2 2 2 2

1 1 ˆ
4
I y x
x yx x y y x y

µ
π

⎡ ⎤
= + + +⎢ ⎥

⎢ + + ⎥⎣ ⎦
B k


. (9.11.50) 

 
A little trigonometry reveals that Eq. (9.11.50) is consistent with Eq. (9.1.5). 
 
 
9.12 Conceptual Questions 
 
1. Compare and contrast Biot-Savart law with Coulomb’s law.  
 
2. If a spring carries a current, does the spring stretch or compress? Explain. 
 
3. How is the path of the integration of    


B ⋅ d

s∫  chosen when applying Ampere’s law? 

  
4. Two concentric, co-planar circular loops of different diameters carry steady currents in 
the same direction. Do the loops attract or repel each other? Explain. 
 
5. Suppose three infinitely long parallel wires are arranged in such a way that when 
looking at the cross section, they are at the corners of an equilateral triangle. Can currents 
be arranged (combination of flowing in or out of the page) so that all three wires (a) 
attract, and (b) repel each other? Explain.  
 
 
9.13 Additional Problems 
 
 
9.13.1 Application of Ampere's Law 
 
The simplest possible application of Ampere's law allows us to calculate the magnetic 
field in the vicinity of a single infinitely long wire. Adding more wires with differing 
currents will check your understanding of Ampere's law. 
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(a) Calculate with Ampere's law the magnetic field,     |

B |= B(r) , as a function of distance 

r from the wire, in the vicinity of an infinitely long straight wire that carries current I. 
Show with a sketch the integration path you choose and state explicitly how you use 
symmetry. What is the field at a distance of 10 mm from the wire if the current is 10 A? 

 
(b) Eight parallel wires cut the page perpendicularly at the points shown. A wire labeled 
with the integer k (k = 1, 2, ... , 8) bears the current 2k times 0I  (i.e., 02kI k I= ). For 
those with k = 1 to 4, the current flows up out of the page; for the rest, the current flows 
down into the page. Evaluate    


B ⋅ d

s∫  along the closed path (see figure) in the direction 

indicated by the arrowhead. (Watch your signs!) 
 
  

 
 

Figure 9.13.1 Amperian loop. 
 

(c) Can you use a single application of Ampere's Law to find the field at a point in the 
vicinity of the 8 wires? Why? How would you proceed to find the field at an arbitrary 
point P?  
 
 
9.13.2  Magnetic Field of a Current Distribution from Ampere's Law 
 
Consider the cylindrical conductor with a hollow center and copper walls of thickness 
b a−  as shown in Figure 9.13.2. The radii of the inner and outer walls are a and b 
respectively, and the current I is uniformly spread over the cross section of the copper. 
 
(a) Calculate the magnitude of the magnetic field in the region outside the conductor, 
r b> . (Hint: consider the entire conductor to be a single thin wire, construct an 
Amperian loop, and apply Ampere's Law.) What is the direction of B


? 
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Figure 9.13.2 Hollow cylinder carrying a steady current I. 
 

(b) Calculate the magnetic field inside the inner radius,  r < a . What is the direction of B


? 
 
(c) Calculate the magnetic field within the inner conductor,  a < r < b . What is the 
direction of B


?  

 
(d) Plot the behavior of the magnitude of the magnetic field   B(r)  from   r = 0  to 4r b= . 
Is   B(r)  continuous at  r = a  and  r = b? What about its slope? 
 
(e) Now suppose that a very thin wire running down the center of the conductor carries 
the same current I in the opposite direction. Can you plot, roughly, the variation of   B(r)  
without another detailed calculation? (Hint: remember that the vectors dB


 from different 

current elements can be added to obtain the magnetic field.) 
 
 
9.13.3 Cylinder with a Hole 
 
A long copper rod of radius a has an off-center cylindrical hole through its entire length, 
as shown in Figure 9.13.3. The conductor carries a current  I  that is directed out of the 
page and is uniformly distributed throughout the cross section. Find the magnitude and 
direction of the magnetic field at the point P.  
 

 
 

Figure 9.13.3 A cylindrical conductor with a hole. 
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9.13.4 The Magnetic Field Through a Solenoid 
 
A solenoid has 200 closely spaced turns so that, for most of its length, it may be 
considered to be an ideal solenoid. It has a length of 0.25 m, a diameter of 0.1 m, and 
carries a current of 0.30 A.  
 
(a) Sketch the solenoid, showing clearly the rotation direction of the windings, the current 
direction, and the magnetic field lines (inside and outside) with arrows to show their 
direction. What is the dominant direction of the magnetic field inside the solenoid? 
 
(b) Find the magnitude of the magnetic field inside the solenoid by constructing an 
Amperian loop and applying Ampere's law. 
  
(c) Does the magnetic field have a component in the direction of the wire in the loops 
making up the solenoid? If so, calculate its magnitude both inside and outside the 
solenoid, at radii 30 mm and 60 mm respectively, and show the directions on your sketch. 
 
 
9.13.5 Rotating Disk 
 
A circular disk of radius R with uniform charge density σ  rotates with an angular speed 
ω .  Show that the magnetic field at the center of the disk is  
 

 0
1
2

B Rµ σω= . 

 
Hint: Consider a circular ring of radius r and thickness dr. Show that the current in this 
element is ( / 2 )dI dq r drω π ωσ= = . 
 
9.13.6 Four Long Conducting Wires 
 
Four infinitely long parallel wires carrying equal current I are arranged in such a way 
that when looking at the cross section, they are at the corners of a square, as shown in 
Figure 9.13.5.  

 
 

Figure 9.13.5 Four parallel conducting wires 
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Currents in A and D point out of the page, and into the page at B and C. What is the 
magnetic field at the center of the square? 
 
 
9.13.7 Magnetic Force on a Current Loop 
 
A rectangular loop of length l  and width w  carries a steady current 1I . The loop is then 
placed near a finitely long wire carrying a current 2I , as shown in Figure 9.13.6. What is 
the magnetic force experienced by the loop due to the magnetic field of the wire? 
 

 
 

Figure 9.13.6 Magnetic force on a current loop. 
 
 
9.13.8 Magnetic Moment of an Orbital Electron  
 
We want to estimate the magnetic dipole moment associated with the motion of an 
electron as it orbits a proton.  We use a “semi-classical” model to do this. Assume that 
the electron has speed v  and orbits a proton (assumed to be very massive) located at the 
origin.  The electron is moving in a right-handed sense with respect to the z-axis in a 
circle of radius r = 0.53 Å, as shown in Figure 9.13.7.  Note that 1 Å = 1010  m− . 
 

 
 

Figure 9.13.7 
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(a) The inward force necessary to required to make the electron move in this circle is 
provided by the Coulomb attractive force between the electron and proton (me is the mass 
of the electron).  Using this fact, and the value of r we give above, find the speed of the 
electron in our “semi-classical” model.  [Ans. 62.18 10  m/s× .] 

 
(b) Given this speed, what is the orbital period T of the electron? [Ans. 161.52 10 s−× .] 
 
(c) What current is associated with this motion?  Think of the electron as stretched out 
uniformly around the circumference of the circle.  In a time T, the total amount of charge 
q that passes an observer at a point on the circle is just e . [Ans. 1.05 mA.  Big!] 
 
(d) What is the magnetic dipole moment associated with this orbital motion?  Give the 
magnitude and direction.  The magnitude of this dipole moment is called the Bohr 
magneton, Bµ .  [Ans. 24 29.27 10  A m−× ⋅ along the negative z -axis.] 
 
(e) One of the reasons this model is “semi-classical” is because classically there is no 
reason for the radius of the orbit above to assume the specific value we have given.  The 
value of r is determined from quantum mechanical considerations. The orbital angular 
momentum of the electron can only assume integral multiples of h/2π, where 
  h = 6.63×10−34  J ⋅s  is the Planck constant.  What is the orbital angular momentum of the 
electron in this model, in units of / 2h π ?  
 
 
9.13.9 Ferromagnetism and Permanent Magnets 
 
A disk of iron has a height 1.00 mmh =  and a radius 1.00 cmr = . The magnetic dipole 
moment of an atom of iron is 23 21.8 10  A mµ −= × ⋅ .  The molar mass of iron is 55.85 g, 
and its density is 7.9 g/cm3.  Assume that all the iron atoms in the disk have their dipole 
moments aligned with the axis of the disk. 
 
(a) What is the number density of the iron atoms?  How many atoms are in this disk?  
[Ans. 28 38.5 10  atoms/m× ; 222.7 10  atoms× .] 
 
(b) What is the magnetization M


 in this disk?  [Ans.  61.53 10  A/m× , parallel to axis.] 

 
(c) What is the magnetic dipole moment of the disk?  [Ans. 20.48 A m⋅ .] 

 
(d) If we were to wrap one loop of wire around a circle of the same radius r, how much 
current would the wire have to carry to get the dipole moment in (c)? This is the 
“equivalent” surface current due to the atomic currents in the interior of the magnet.  
[Ans.  1525 A.] 
 
 



 

 
 

9-70 

9.13.10 Charge in a Magnetic Field 
 
A coil of radius R with its symmetric axis along the x-direction carries a steady current I 
directed as shown in Figure 9.13.8. A positive charge q moves with a velocity ˆv=v j  
when it crosses the axis at a distance x from the center of the coil.  
 

 
 

Figure 9.13.8 
 

Describe the subsequent motion of the charge. What is the instantaneous radius of 
curvature?  
 
 
9.13.11 Permanent Magnets 
 
A magnet in the shape of a cylindrical rod has a length of 4.8 cm and a diameter of 1.1 
cm.  It has a uniform magnetization M of 5300 A/m, directed parallel to its axis.   
 
(a) Calculate the magnetic dipole moment of this magnet.   
 
(b) What is the axial field a distance of 1 meter from the center of this magnet, along its 
axis?  [Ans.  (a) 2 22.42 10  A m−× ⋅ , (b) 94.8 10 T−× , or 54.8 10  gauss−× .] 
 
 
9.13.12 Magnetic Field of a Solenoid 
 
(a) A 3000-turn solenoid has a length of 60 cm and a diameter of 8 cm.  If this solenoid 
carries a current of 5.0 A, find the magnitude of the magnetic field inside the solenoid by 
constructing an Amperian loop and applying Ampere's Law.  How does this compare to 
the magnetic field of the earth (0.5 gauss).  [Ans.  0.0314 T, or 314 gauss, or about 600 
times the magnetic field of the earth]. 
 
We make a magnetic field in the following way: we have a long cylindrical shell of non-
conducting material which carries a surface charge fixed in place (glued down) with 
charge density  σ  , as shown in Figure 9.13.9. The cylinder is suspended in a manner 
such that it is rotating about its axis such that the speed of the surface of the cylinder is 0v . 
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Figure 9.13.9 
 
(b) What is the surface current K  on the walls of the cylinder, in A/m?  [Ans. 0K vσ= .] 
 
(c) What is magnetic field inside the cylinder?  [Ans. 0 0 0B K vµ µ σ= = , oriented along 
axis right-handed with respect to spin.] 
 
(d) What is the magnetic field outside of the cylinder?  Assume that the cylinder is 
infinitely long.  [Ans. 0].   
 
 
9.13.13 Effect of Paramagnetism  
 
A solenoid with 16 turns/cm carries a current of 1.3 A.   
 
(a) By how much does the magnetic field inside the solenoid increase when a close-fitting 
chromium rod is inserted?  [Note: Chromium is a paramagnetic material with magnetic 
susceptibility 42.7 10χ −= × .]   
 
(b) Find the magnitude of the magnetization M


 of the rod. [Ans.  (a) 0.86 µT; (b) 0.68 

A/m.] 
 
 
9.14 Ampere’s Law Simulation 
 
In this section we explore the meaning of Ampere’s Law using a 3D interactive 
simulation that creates imaginary, moveable Amperian loops in the presence of real, 
moveable line currents   This simulation illustrates Ampere's Law for a circular or 
rectangular imaginary Amperian loop, in the presence of current-carrying wires current 
currents both into and out of the page.   
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       http://peter-edx.99k.org/FaradaysLaw.html 
 

Figure 9.14.1 Screen Shot of Ampere’s Law Simulation 
 

You begin with one a wire carrying current out of the page and one carrying current into 
the page in the scene. You can add additional line currents, or delete all line currents 
present and start again. Left clicking and dragging on a line current can move that line 
current.  You can choose whether your imaginary Amperian loop is a circle or a rectangle, 
and you can move that loop. You will see gray vectors    d

s  tangent to the Amperian loops 
at many points on the loop. At those same points you will see the local magnetic field 
(blue vectors) on the loop due to all the line currents in the scene.  If you left click and 
drag in the view, your perspective will change so that you can see the field vector and 
tangent orientation better. If you want to return to the original view you can "Reset 
Camera.” 
 
Use the simulation to verify the following properties of Ampere’s Law.  For the 
Amperian loop, you may choose either the circle or the rectangle.  
   

(1)  If line currents do not carry current through an Amperian loop, the line integral of 
the magnetic field around the loop is zero.  

 
(2)  If line currents do carry current through an Amperian loop, the line integral of the 

magnetic field around the loop is positive or negative depending on the direction 
of the total current penetrating the surface of the loop. 

  
Then use the simulation to answer the two following questions.  Consider two line 
currents. Place one of the charged line currents inside your Amperian loop and the other 
outside. 
 

(1) Is the magnetic field B at any point on the loop due only to the line currents that 
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that are inside that loop?  
 
(2) Is the dot product of the magnetic field B with the local line element   d

s at any 
point on the loop due only to the magnetic fields associated with the line currents 
that are inside the loop? 

 
(3) Is the total line integral of the magnetic field around the entire Amperean loop 

due only to the line currents that are inside the loop? 
 
 
 
 
 
 
 
 




