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 Introduction to Magnetic Fields 
 
8.1  Introduction 
 
In this Chapter, we define what we mean by a magnetic field and discuss at length the 
effect the magnetic field has on moving electric charges.  In Chapter 9, we consider the 
manner by which magnetic fields are produced.   
 
We have seen that a charged object produces an electric field   


E  at all points in space. In 

a similar manner, a bar magnet is a source of a magnetic field   

B . This can be readily 

demonstrated by moving a compass near the magnet. The compass needle will line up 
along the direction of the magnetic field produced by the magnet, as depicted in Figure 
8.1.1. 
 

 
 

Figure 8.1.1 Magnetic field produced by a bar magnet. 
 
A bar magnet consists of two poles, which are designated as the north (N) and the south 
(S). Magnetic fields are strongest at the poles. The magnetic field lines leave from the 
north pole and enter the south pole. When holding two bar magnets close to each other, 
the like poles will repel each other while the opposite poles attract (Figure 8.1.2).  
 

 
 

Figure 8.1.2 Magnets attracting and repelling 
 
Unlike electric charges, which can be isolated, the two magnetic poles always come in a 
pair. When you break the bar magnet, two new bar magnets are obtained, each with a 
north pole and a south pole (Figure 8.1.3). In other words, magnetic “monopoles” do not 
exist in isolation, although they are of theoretical interest.   
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Figure 8.1.3 Magnetic monopoles do not exist in isolation 
 
Another familiar source of magnetic fields is the current-carrying wire. In Figure 8.1.4, 
we show the magnetic field associated with an infinitely long current-carrying wire.  The 
magnetic field is wrapped in circles about the wire, with the direction of the rotation of 
the circles determined by the right hand rule (if the thumb of your right hand is in the 
direction of the current, your fingers will curl in the direction of the magnetic field).   
 

 
 

Figure 8.1.4 Magnetic field lines due to an infinite wire carrying current  I . 
 
As we have already seen in Section 1.7, moving electric charges also have magnetic 
fields, with a configuration similar to that shown in Figure 8.1.4, that is, circles centered 
on an axis defined by the vector velocity of the charge. 
 
How do we define the magnetic field   


B ? In the case of an electric field   


E , we have 

already seen that the field is defined as the force per unit charge: 
  

 
   


E =

Fe

q
. (8.1.1) 

 
However, due to the absence of magnetic monopoles,   


B  must be defined in a different 

way. 
 
8.2  The Definition of a Magnetic Field 
 
To define the magnetic field at a point  P , consider a particle of charge  q , located at 
point  P ,  moving with velocity   

v  at  P .  
 

(1) We find by experiment that the force    

FB  at  P  on the charged particle at the point  P  is 

perpendicular to the direction of   
v  at  P .  

 
(2) When we vary the direction of the velocity of the charged particle through  P , then for 

a particular direction of   
v  (and also opposite that direction), we observe that the force 

   

FB  at  P  is zero. We define the direction of the magnetic field at  P ,   


B , to point 
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along that particular line formed by the direction of   
v  at  P . In a moment we will 

establish by convention, which direction along that line the magnetic field points.  
 

(3) We then vary the direction of   
v  at  P , so that it moves perpendicular to   


B , until the 

magnitude of the force    

FB  is maximal, 

  
FB,max . We define the magnitude of the 

magnetic field at  P ,  B , by  
 

 
    
B =

FB,max

q v
. (8.2.1) 

 

 
 

Figure 8.2.1 The definition of the magnetic force by the vector cross product 
 
 
The above observations can be summarized by the following definition for the magnetic 
field at any point  P .  The field causes a force on a moving electric charge given by 
 
    


FB = qv ×


B . (8.2.2) 

 
In this section we simply state this force law, without trying to justify it in any way.  This 
is the path followed by almost all introductory textbooks.  But you will get a better 
understanding of this law at an intuitive level by reading Section 8.6.1 below, where we 
explain how Faraday thought of this force law, in terms of lines of force (see also Section 
1.1).   
 

When the sign of the charge of the particle is switched from positive to negative (or vice 
versa), we observe that the direction of the magnetic force also reverses. For a positively 
charged particle, we have chosen the direction of   


B such that (Figure 8.2.1),  

 
     direction (v ×


B) = direction


FB , (positvely charged particle)  (8.2.3) 

 
For the positively charged particle shown in Figure 8.2.1, the magnitude of BF


 is given 

by 
   FB = | q | vBsinθ , 0 ≤θ ≤ π . (8.2.4) 
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The SI unit of magnetic field is the tesla (T), 
 

 Newton N N
1 tesla 1 T 1 1 1

(Coulomb)(meter/second) C m/s A m
= = = =

⋅ ⋅
. 

 
Another commonly used non-SI unit for B


 is the gauss (G), where 41T 10 G= .  

 
Note that BF


 is always perpendicular to v  and B


, and cannot change the particle’s speed 

v (and thus the kinetic energy). In other words, magnetic force cannot speed up or slow 
down a charged particle. Consequently, BF


 can do no work on the particle, 

 
 ( ) ( ) 0BdW d q dt q dt= ⋅ × ⋅ = × ⋅ =F s = v B v v v B

       . (8.2.5) 
 
The direction of v , however, can be altered by the magnetic force, as we shall see below.  
 
 
8.3  Magnetic Force on a Current-Carrying Wire 
 
In this section we derive in the standard way the force that a current-carrying wire feels in 
a magnetic field. (You will get a better understanding of this law at an intuitive level by 
reading Section 8.6.3 below.)  
 
8.3.1 Magnetic Force as the Sum of Forces on Charge Carriers in the Wire 
 
We have just seen that a charged particle moving through a magnetic field experiences a 
magnetic force BF


. Because electric current consists of a collection of charged particles 

in motion, when placed in a magnetic field, a current-carrying wire will also experience a 
magnetic force.  
 
Consider a long straight wire suspended in the region between the two magnetic poles. 
The magnetic field points out the page and is represented with dots (•). It can be readily 
demonstrated the wire is deflected to the left when the direction of the current is 
downward in the wire. However, when the current is upward, the deflection is rightward, 
as shown in Figure 8.3.1.   
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Figure 8.3.1 Deflection of current-carrying wire by magnetic field 

 
To calculate the force exerted on the wire, consider a segment of wire of length  s  and 
cross-sectional area  A , as shown in Figure 8.3.2. The magnetic field points into the page, 
and is represented with crosses ( X ).  
 

 
 

Figure 8.3.2 Magnetic force on a conducting wire 
 
The charges move at an average drift velocity dv

 . Because the amount of charge in this 
segment is   Qtot = q(nAs) , where n is the number of charges per unit volume, the total 
magnetic force on the segment is 
 
     


FB = Qtot

vd ×

B = qnAs(vd ×


B) = I(

s ×

B) , (8.3.1) 

 
where dI nqv A= , and   

s  is a length vector with a magnitude  s  and directed along the 
direction of the electric current.  
 
For a wire of arbitrary shape, the magnetic force can be obtained by summing over the 
forces acting on the small segments that make up the wire. Let the differential segment be 
denoted as d s  (Figure 8.3.3). 
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Figure 8.3.3 Current-carrying wire placed in a magnetic field 
 
The magnetic force acting on the segment is 
 
 Bd Id= ×F s B

  . (8.3.2) 
Thus, the total force is  

 
b

B a
I d= ×∫F s B

 
, (8.3.3) 

 
where a and b represent the endpoints of the wire.   
 
As an example, consider a curved wire carrying a current  I  in a uniform magnetic field 
B


, as shown in Figure 8.3.4. 
 

 
 
Figure 8.3.4 A curved wire carrying a 
current I. 

 
 

Figure 8.3.5 A closed loop carrying a 
current I in a uniform magnetic field. 

 
 
Using Eq. (8.3.3), and the fact that the magnetic field is uniform so we can pull it out of 
the integral, the magnetic force on the wire is given by 
 

 
   


FB = I d s ×


B

a

b

∫⎛⎝
⎞
⎠ = I d s

a

b

∫⎛⎝
⎞
⎠ ×

B = I


L×

B , (8.3.4) 

 
where   


L  is the length vector directed from a to b. However, if the wire forms a closed 

loop of arbitrary shape (Figure 8.3.5), then the set of differential length elements d s  
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form a closed polygon, and their vector sum is zero, i.e., 
    

d s = 0∫ . Therefore the 

magnetic force on a closed current loop is 0B =F


, 
 
 

    

FB = I d s∫( ) × B =


0, (uniform 


B) . (8.3.5) 

 
Example 8.1: Magnetic Force on a Semi-Circular Loop 
 
Consider a closed semi-circular loop lying in the  xy -plane carrying a current I in the 
counterclockwise direction, as shown in Figure 8.3.6.  
 

 
 

Figure 8.3.6 Semi-circular loop carrying a current I  
 
A uniform magnetic field pointing in the +y direction is applied. Find the magnetic force 
acting on the straight segment and the semicircular arc. 
 
Solution: Let ˆB=B j


, and 1F


 and 2F


 are the forces acting on the straight segment and 

the semicircular parts, respectively. Using Eq. (8.3.3) and noting that the length of the 
straight segment is 2R, the magnetic force is  
 
 1

ˆ ˆ ˆ(2 ) ( ) 2I R B IRB= × =F i j k


, 
 
where k̂ is directed out of the page. To evaluate 2F


, we first note that the differential 

length element d s  on the semicircle can be written as  
 

    d
s = ds θ̂ = Rdθ(− sinθ î + cosθ ĵ) . 

 
The force acting on the length element d s  is 
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 2

ˆ ˆ ˆ ˆ( sin cos ) ( ) sind Id IR d B IBR dθ θ θ θ θ= × = − + × = −F s B i j j k
  . 

 
Here we see that 2dF


 points into the page. Integrating over the entire semi-circular arc, 

we have 
 2 0

ˆ ˆsin 2IBR d IBR
π

θ θ= − = −∫F k k


. 

 
Thus, the net force acting on the semi-circular wire is 
 
 net 1 2= + =F F F 0

  
. 

 
This is consistent with Eq. (8.3.5) that the magnetic force acting on a closed current-
carrying loop must be zero.  
 
8.4  Torque on a Current Loop 
 
In this section we derive in the standard way the torque on a current loop in a magnetic 
field. (You will get a better understanding of this torque at an intuitive level by reading 
Section 8.6.4 below.) 
 
 
What happens when we place a rectangular loop carrying a current I in the  xy  plane and 
switch on a uniform magnetic field ˆB=B i


 which runs parallel to the plane of the loop, 

as shown in Figure 8.4.1(a)?  
 

 
 

Figure 8.4.1(a) A rectangular current loop placed in a uniform magnetic field. 
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Figure 8.4.1(b) The magnetic forces acting on sides 2 and 4. 
 
From Eq. (8.3.1), we see the magnetic forces acting on sides 1 and 3 vanish because the 
length vectors     

s1 = −b î  and     
s3 = b î  are parallel and anti-parallel to B


 and their cross 

products vanish. The magnetic forces acting on segments 2 and 4 are non-vanishing, 
 

 

    


F2 = I(−a ĵ) × (B î) = IaBk̂

F4 = I(a ĵ) × (B î) = − IaBk̂.

⎧
⎨
⎪

⎩⎪
 (8.4.1) 

  
Thus, the force on the rectangular loop is 
 
 net 1 2 3 4= + =F F F +F +F 0

    
, (8.4.2) 

 
as expected. Even though the force on the loop vanishes, the forces 2F


 and 4F


 will 

produce a torque that causes the loop to rotate about the y-axis (Figure 8.4.2). The torque 
about the center of the loop is 
 

 

    


τ = −(b / 2)î ×


F2 + (b / 2)î ×


F4 = −(b / 2)î × (IaBk̂) + (b / 2)î × (− IaBk̂)

= (IabB / 2 + IabB / 2) ĵ = IabB ĵ = IAB ĵ
 (8.4.3) 

 
where A ab=  represents the area of the loop and the positive sign indicates that the 
rotation is clockwise about the y-axis.  
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Figure 8.4.2 Rotation of a rectangular current loop in a uniform magnetic field 
 
It is convenient to introduce the area vector ˆA=A n


 where n̂  is a unit vector in the 

direction normal to the plane of the loop. The direction of the positive sense of n̂  is set 
by the conventional right-hand rule. In our case, we have ˆn̂ = +k . The above expression 
for torque can then be rewritten as 
    


τ = I


A ×

B  (8.4.4) 

 
The magnitude of the torque is at a maximum when B


 is parallel to the plane of the loop 

(or perpendicular to A


). 
 
Consider now the more general situation where the loop (or the area vector A


) makes 

an angle θ  with respect to the magnetic field.  
 

 
 

Figure 8.4.2 Rotation of a rectangular current loop 
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From Figure 8.4.2, the lever arms and can be expressed as 
 

 
    
r2 =

b
2

(− sinθ î + cosθ k̂) = −r4 . (8.4.5) 

 
The torque about the center of the loop becomes 
 

 

    


τ = r2 ×


F2 +
r4 ×

F4 = 2r2 ×


F2 = 2 ⋅ (b / 2)(− sinθ î + cosθ k̂) × (IaB k̂)

= IabBsinθ ĵ = I

A ×

B.

 (8.4.6) 

 
For a loop consisting of N turns, the magnitude of the toque is 
 
 sinNIABτ θ= . (8.4.7) 
 
The quantity NIA


 is called the magnetic dipole moment  


µ , 

 
    


µ = NI


A . (8.4.8) 

  

 
 

Figure 8.4.3 Right-hand rule for determining the direction of  

µ  

 
The direction of  


µ  is the same as the area vector A


 (perpendicular to the plane of the 

loop) and is determined by the right-hand rule (Figure 8.4.3). The SI unit for the 
magnetic dipole moment is ampere-meter2 2(A m )⋅ . Using the expression for  


µ , the 

torque exerted on a current-carrying loop can be rewritten as 
  
   


τ =

µ ×

B  (8.4.9) 

 
The above equation is analogous to   


τ = p ×


E  in Eq. (2.8.3), the torque exerted on an 

electric dipole moment p  in the presence of an electric field E


. Recalling that the 
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potential energy for an electric dipole is U = − ⋅p E
  [see Eq. (2.8.7)], a similar form is 

expected for the magnetic case. In figure 8.4.2, the angular velocity is given by 

    

ω = (dθ / dt)(− ĵ) . The work done by the magnetic field to rotate the magnetic dipole 
from an angle 0θ  to θ  is given by 
 

                        

    

W =

τ ⋅

ω dt

θ0

θ

∫ = (µBsin ′θ ĵ) ⋅(d ′θ / dt)(− ĵ)dt
θ0

θ

∫
= − (µBsin ′θ )d ′θ

θ0

θ

∫ = µB(cosθ − cosθ0 ).
                             (8.4.10) 

  
The result shows that a positive work is done by the field when  cosθ > cosθ0 , (when 

 θ < θ0 ). The change in potential energy UΔ  of the dipole is the negative of the work 
done by the field, 
 
   ΔU =U −U0 = −W = −µB(cosθ − cosθ0 ) , (8.4.11) 
 
We shall choose our zero point for the potential energy when the angle between the 
dipole moment and the magnetic field is  π / 2 ,   U (θ0 = π / 2) = 0 . Then, when the dipole 
moment is at an angle θ  with respect to the direction of the external magnetic field, we 
define the potential energy function by  
 
    U (θ ) = −µBcosθ = −


µ ⋅

B, where U (π / 2) = 0  (8.4.12) 

 
The configuration is at a stable equilibrium when  


µ  is aligned parallel to B


, making U  

a minimum with minU Bµ= − . On the other hand, when  

µ  and B


 are anti-parallel, 

maxU Bµ= +  is a maximum and the system is unstable.  
 
 
8.4.1 Magnetic force on a dipole  
 
As we have shown above, the force experienced by a current-carrying rectangular loop, 
(which we consider as a magnetic dipole) that is placed in a uniform magnetic field is 
zero. What happens if the magnetic field is non-uniform? In this case, there will be a 
force acting on the dipole.  
 
Consider the situation where a small dipole  


µ  is placed along the symmetric axis of a 

bar magnet, as shown in Figure 8.4.4. 
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Figure 8.4.4 A magnetic dipole near a bar magnet. 
 
The dipole experiences an attractive force by the bar magnet whose magnetic field is 
non-uniform in space. Thus, an external force must be applied to move the dipole to the 
right. The amount of force   Fext  exerted by an external agent to move the dipole by a 
distance xΔ is given by 
 
   FextΔx =Wext = ΔU = −µB(x + Δx) + µB(x) = −µ[B(x + Δx) − B(x)] , (8.4.13) 
 
where we have used Eq. (8.4.11). For small xΔ , the external force may be obtained as     
 

 ext
[ ( ) ( )]B x x B x dB

F
x dx

µ µ+ Δ −= − = −
Δ

, (8.4.14) 

 
which is a positive quantity since / 0dB dx < , i.e., the magnetic field decreases with 
increasing x. This is precisely the force needed to overcome the attractive force due to 
the bar magnet. Thus, we have  

 
    
FB = µ dB

dx
= d

dx
(

µ ⋅

B) . (8.4.15) 

 
More generally, the magnetic force experienced by a dipole  


µ  placed in a non-uniform 

magnetic field B


 can be written as 
 
     


FB = ∇(


µ ⋅

B) , (8.4.16) 

where  

 ˆ ˆ ˆ
x y z
∂ ∂ ∂∇ = + +
∂ ∂ ∂
i j k  (8.4.17) 

 
is the gradient operator. 
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8.5  Charged Particles in a Uniform Magnetic Field 
 
In this section we discuss charge motion in a uniform magnetic field in the standard 
manner. (You will get a better understanding of this motion at an intuitive level by 
reading Section 8.6.2 below.)  
 
If a particle of mass m moves in a circle of radius r at a constant speed v, there must be a 
radial force acting on the particle that always points toward the center and is 
perpendicular to the velocity of the particle. 
 
In Section 8.2, we have already shown that the magnetic force BF


 always points in the 

direction perpendicular to the velocity v  of the charged particle and the magnetic field 
B


. Since BF


 can do no work, it can only change the direction of v  but not its 
magnitude. What would happen if a charged particle moves through a uniform magnetic 
field B


 with its initial velocity v  at a right angle to B


? For simplicity, let the charge be 

+q and the direction of B


 be into the page.  The magnitude force BF


 acting on the 
particle is a centripetal force (acting radially inward) given by 
 
     


FB = qv ×


B = qvB(−r) . (8.5.1) 

 
The charged particle will move in a circular path in a counterclockwise direction, as 
shown in Figure 8.5.1.  
 

 
Figure 8.5.1 Path of a charge particle moving in a uniform B


 field with velocity v  

initially perpendicular to B


. 
 
Recall that a particle undergoing uniform circular motion accelerates to the center 
according to 

 
    
a = v2

r
(−r) . (8.5.2) 

 
Therefore the radially component of Newton’s Second Law becomes 
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2mvqvB
r

= . (8.5.3) 

 
We cam solve Eq. (8.5.3) for the radius of the circle 
 

 
mvr
qB

= . (8.5.4) 

 
The period T (time required for one complete revolution) is given by 
 

 2 2 2r mv mT
v v qB qB
π π π= = = . (8.5.5) 

 
Similarly, the angular speed (cyclotron angular frequency) ω  of the particle can be 
obtained as 
 

 2 v qBf
r m

ω π= = = . (8.5.6) 

  
If the initial velocity of the charged particle has a component parallel to the magnetic 
field B


, instead of a circle, the resulting trajectory will be a helical path, as shown in 

Figure 8.5.2: 
 

 
 
Figure 8.5.2 Helical path of a charged particle in an external magnetic field. The 
velocity of the particle has a non-zero component along the direction of B


. 

 
8.6   Rubber Bands and Strings and the Forces Transmitted by Magnetic Fields  
 
We now return to our considerations in Section 1.1.2, where we asserted that depictions 
of the total field, that is the field due to all currents being considered, allows profound 
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insight into the mechanisms whereby fields transmit forces. The stresses transmitted by 
magnetic fields can be understood as analogous to the forces transmitted by rubber 
bands and strings, but to reach this understanding we must show a representation of the 
total magnetic field, as we do in the four examples following.  The examples below 
show you how Faraday, the father of field theory, understood how his “lines of force” 
picture explained the Lorentz Force Law at a more intuitive level than simply stating it, 
as we did in Eq. (8.2.2) above.  The interactive simulation of the force on a current loop 
in the field of a magnetic dipole in Section 8.13 will give you additional insight into the 
cause of magnetic forces, from Faraday’s point of view.   
 
 
8.6.1  A Charged Particle in a Time-Varying Magnetic Field Movie 
 
As an example of how we can understand the forces transmitted by magnetic fields if we 
look at the total field, following Faraday, consider a moving positive point charge at the 
origin in a rapidly changing time-dependent external field. This external field is uniform 
in space but varies in time according to the equation 
 

 
    


B = − B0 sin4 2πt

T
⎛
⎝⎜

⎞
⎠⎟

k̂ . (8.6.1) 

 
We assume that the variation of this field is so rapid that the charge moves only a 
negligible distance in one period  T .  The magnetic field of the moving charge is given 
by the following expression, assumed non-relativistic motion (we will discuss this 
equation in Chapter 9, Section 9.1.2). 
  

 
    


B =

µ0

4π
qv × r̂

r 2 . (8.6.2) 

 
Figure 8.6.1 shows two frames of an animation of the total magnetic field configuration 
for this situation, that is, the sum of the background field and the field of the moving 
charge.  We note that Equation (8.2.2) would predict a magnetic force to the right in this 
situation.  Figure 8.6.1(a) is at   t = 0 , when the vertical background magnetic field is 
zero, and we see only the magnetic field of the moving charge (the charge is moving out 
of the page, so the field circulates counterclockwise).  Frame 8.6.1(b) is at a quarter 
period later, when the vertically downward magnetic field is at a maximum.  To the left 
of the charge, where the field of the charge is in the same direction as the external 
magnetic field (downward), the magnetic field is enhanced.  To the right of the charge, 
where the field of the charge is opposite that of the external magnetic field, the magnetic 
field is reduced (and is zero at one point to the right of the charge).   
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Figure 8.6.1 Two frames of an animation of the magnetic field around a positive charge 
moving out of the page in a time-changing magnetic field that points downward.  The 
blue vector is the magnetic field and the green vector is the force on the point charge. 

http://youtu.be/zjy9b_PLvbw 
 
Faraday would have interpreted the field configuration in Figure 8.6.1(b) as indicating a 
net force to the right on the moving charge, in agreement with the predictions of 
Equation (8.2.2).  He would have said that this occurs because the pressure of the 
magnetic field is much higher on the left as compared to the right.  Note that if the 
charge had been moving into the page instead of out of the page, the force would have 
been to the left, because the magnetic pressure would have been higher on the right. The 
animation of Figure 8.6.1 shows dramatically the inflow of energy into the 
neighborhood of the charge as the external magnetic field grows, with a resulting build-
up of stress that transmits a sideways force to the moving positive charge.  
 
We can estimate the magnitude of the force on the moving charge in Figure 8.6.1(b) as 
follows.  At the time shown in Figure 8.6.1(b), the distance   r0  to the right of the charge 
at which the magnetic field of the charge is equal and opposite to the constant magnetic 
field is determined by 

 
  
B0 =

µ0

4π
qv
r0

2 . (8.6.3) 

 
The surface area of a sphere of this radius is   A =4π r0

2 = µ0 qv / B0 . Suppose the 
pressure (force per unit area) and/or tension transmitted across the surface of this sphere 
surrounding the charge is of the order of   B

2 / 2µ0 . Since the magnetic field on the 
surface of the sphere is of the order   B0 , the total force transmitted by the field is of order  

 
  
F = PA =

B0
2

2µ0

(4π r0
2 ) =

B0
2

2µ0

⋅
µ0qv
B0

≈ qvB0 . (8.6.4) 

 
as we expect from Equation 8.2.2.  Of course this net force to the right is a combination 
of a pressure pushing to the right on the left side of the sphere and a tension pulling to 
the right on the right side of the sphere in Figure 8.6.1(b). 
 
The rough estimate that we have just made demonstrates that the pressures and tensions 
transmitted across the surface of this imaginary sphere surrounding the moving charge 

https://youtu.be/ZdW9aywSkRk
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are plausibly of the order   B
2 / 2µ0 .  In addition, this argument gives us some intuitive 

insight in to why the magnetic force on a moving charge is transverse to the velocity of 
the charge and to the direction of the background field.  This is because of the side of the 
charge on which the total magnetic pressure is the highest.  It is this pressure that causes 
the deflection of the charge.   
 
8.6.2 Charged Particle Moving in a Uniform Magnetic Field Movie 
 
We now use Faraday’s insights to understand in a different way the circular motion of a 
charged particle in a magnetic field, as we discussed in the traditional manner in Section 
8.5 above.  Figure 8.6.2 shows a charge moving toward a region where the magnetic 
field is vertically upward. When the charge enters the region where the external 
magnetic field is non-zero, it is deflected in a direction perpendicular to that field and to 
its velocity as it enters the field.  This causes the charge to move in an arc that is a 
segment of a circle, until the charge exits the region where the external magnetic field is 
non-zero.  We show in the animation the total magnetic field, that is the sum of the 
external magnetic field and the magnetic field of the moving charge.   
 
The bulging of that field on the side opposite the direction in which the particle is 
pushed is due to the buildup in magnetic pressure on that side.   It is this pressure that 
causes the charge to move in a circle.   
 

                
(a)  http://youtu.be/eDojdmQ5sbY       (b)  http://youtu.be/a69-qC0S87U 
 

Figure 8.6.2 Two views of a charged particle moving in a magnetic field that is non-
zero over the pie- shaped region shown. The external field is upward. 

 
Consider also momentum conservation. The moving charge in the movies of Figure 
8.6.2 changes its direction of motion by ninety degrees over the course of the movies. 
How do we conserve momentum in this process?  Momentum is conserved because 
momentum is transmitted by the field from the moving charge to the currents that are 
generating the constant external field. This is plausible given the field configuration 
shown in Figure 8.6.2. The magnetic field stress, which pushes the moving charge 
sideways, is accompanied by a tension pulling the current source for the external field in 
the opposite direction.  To see this, look closely at the field stresses where the external 
field lines enter the region where the currents that produce them are hidden, and 
remember that the magnetic field acts as if it were exerting a tension parallel to itself. 
The momentum loss by the moving charge is transmitted to the hidden currents 

https://youtu.be/WhwF2XOOs3s
https://youtu.be/zUembkiBOKI
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producing the constant field in this manner, so that the total momentum of the system is 
conserved.   
 
8.6.3 Magnetic Force on a Current-Carrying Wire Movie 
 
As another example, let us use Faraday’s approach to understand intuitively why there is 
a force on a current-carrying wire in a magnetic field, as we discussed in the traditional 
manner in Section 8.3 above.   A wire carrying current out of the page and free to move 
impinges on a region with a constant upward magnetic field.  Figure 8.6.3 shows the 
total magnetic field, that is the field of the wire and the constant background field.  We 
see that the force given by Eq. (8.3.1), which is to the left, is caused by the build-up of 
magnetic pressure to the right of the current-carrying wire.  We can also see intuitively 
that the momentum being lost by the wire is being taken up by the sources of current 
that produce the constant field (not shown), because of the implied tension being 
transmitted to those sources of current by the total field at the top and bottom of the 
figure.    
 

   http://youtu.be/jIbhrRs5Q-Q 
 

 
Figure 8.6.3 A wire carrying current out of the page and free to move impinges on a 
region with a constant upward magnetic field.   
 
 
 
8.6.4 Torques on a Dipole in a Constant Magnetic Field Movie 
 

“…To understand this point, we have to consider that a [compass] needle 
vibrates by gathering upon itself, because of it magnetic condition and 
polarity, a certain amount of the lines of force, which would otherwise 
traverse the space about it…”   

Michael Faraday [1855] 
 
Finally, let us use Faraday’s approach to understand intuitively why there is a torque on 
a magnetic dipole in a background magnetic field, as we discussed in the traditional 
manner in Section 8.4 above.   Consider a magnetic dipole in a constant background 
field.  Historically, we note that Faraday understood the oscillations of a compass needle 

https://youtu.be/NmH2iyixPBs
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in exactly the way we describe here.  We show in Figure 8.6.4 a magnetic dipole in a 
“dip needle” oscillating in the magnetic field of the Earth, at latitude approximately the 
same as that of Boston.  The magnetic field of the Earth is predominantly downward and 
northward at these Northern latitudes, as the visualization indicates.  
 
 

   http://youtu.be/hnCFz8N7Juk 
 

Figure 8.6.4 A magnetic dipole in the form of a dip needle oscillates in the magnetic 
field of the Earth. 
 
To explain what is going on in this visualization, suppose that the magnetic dipole 
vector is initially along the direction of the earth’s field and rotating clockwise.  As the 
dipole rotates, the magnetic field lines are compressed and stretched. The tensions and 
pressures associated with this field line stretching and compression results in an 
electromagnetic torque on the dipole that slows its clockwise rotation.  Eventually the 
dipole comes to rest.  But the counterclockwise torque still exists, and the dipole then 
starts to rotate counterclockwise, passing back through being parallel to the Earth’s field 
again (where the torque goes to zero), and overshooting.   

 
As the dipole continues to rotate counterclockwise, the magnetic field lines are now 
compressed and stretched in the opposite sense.  The electromagnetic torque has 
reversed sign, now slowing the dipole in its counterclockwise rotation. Eventually the 
dipole will come to rest, start rotating clockwise once more, and pass back through being 
parallel to the field, as in the beginning.  If there is no damping in the system, this 
motion continues indefinitely.   
 

   http://youtu.be/2Ub4MMEWWn0 
 

https://youtu.be/lTKYGn5Z6qs
https://youtu.be/O6OOJbyBezQ
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Figure 8.6.5 A magnetic dipole in the form of a dip needle oscillates in the magnetic 
field of the Earth.  We show the currents that produce the earth’s field in this 
visualization. 
 
What about the conservation of angular momentum in this situation?  Figure 8.6.5 shows 
a global picture of the field lines of the dip needle and the field lines of the Earth, which 
are generated deep in the core of the Earth.  If you examine the stresses transmitted 
between the Earth and the dip needle in the accompanying movie, you can convince 
yourself that any clockwise torque on the dip needle is accompanied by a 
counterclockwise torque on the currents producing the earth’s magnetic field.  Angular 
momentum is conserved by the exchange of equal and opposite amounts of angular 
momentum between the compass and the currents in the Earth’s core that generate the 
Earth’s magnetic field.   In contrast, the rotational kinetic energy of the compass when it 
comes to rest has been stored locally in the magnetic energy of the local magnetic field, 
from which it returns when the compass begins to rotate again.   
 
8.6.5 Pressures and Tensions Transmitted by Magnetic Fields 
 

“…It appears therefore that the stress in the axis of a line of magnetic 
force is a tension, like that of a rope…” 

J. C. Maxwell [1861]. 
 

Let’s now consider a more general case of stress (pressure or tension) transmitted by 
magnetic fields, as we did in Section 2.11.5 for electric fields. These two discussions are 
very similar.  In Figure 8.6.6, we show an imaginary closed surface (a box) placed in a 
magnetic field.  If we look at the face on the left side of this imaginary box, the field on 
that face is perpendicular to the outward normal to that face. Using the result illustrated 
in Figure 8.6.6, the field on that face transmits a pressure perpendicular to itself.  In this 
case, this is a push to the right.   Similarly, if we look at the face on the right side of this 
imaginary box, the field on that face is perpendicular to the outward normal to that face, 
the field on that face transmits a pressure perpendicular to itself.  In this case, this is a 
push to the left.   
 
If we want to know the total magnetic force transmitted to the interior of this imaginary 
box in the left-right direction, we add these two transmitted stresses. If the magnetic 
field is homogeneous, this total magnetic force transmitted to the interior of the box in 
the left-right direction is a push to the left and an equal but opposite push to the right, 
and the transmitted force adds up to zero.    
 
Figure 8.6.6 An imaginary dark blue box in a 
magnetic field (long light blue vectors).  The 
short gray vectors indicate the directions of 
stresses transmitted across the surface of the 
imaginary box by the field, either pressures 
(on the left or right faces of the box) or 
tensions (on the top and bottom faces of the 
box). 
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In contrast, if the right side of this imaginary box is sitting inside a long vertical solenoid, 
for which the magnetic field is vertical and constant, and the left side is sitting outside of 
that solenoid, where the magnetic field is zero, then there is a net push to the left, and we 
say that the magnetic field exerts a outward pressure on the walls of the solenoid.   We 
can deduce this by simply looking at the magnetic field topology.  At sufficiently high 
magnetic field, such forces will cause the walls of a solenoid to explode outward.   A 
quantitative calculation of the pressure transmitted by magnetic fields in such a situation 
is presented in Section 11.11. 
 
Similarly, if we look at the top face of the imaginary box in Figure 8.6.6, the field on 
that face is parallel to the outward normal to that face, and one may show that the field 
on that face transmits a tension along itself across that face.  In this case, this is an 
upward pull, just as if we had attached a string under tension to that face, pulling upward.   
On the other hand, if we look at the bottom face of this imaginary box, the field on that 
face is anti-parallel to the outward normal to that face, and Faraday would again have 
said that the field on that face transmits a tension along itself.  In this case, this is a 
downward pull, just as if we had attached a string to that face, pulling downward.  Note 
that this is a pull parallel to the outward surface normal, whether the field is into the 
surface or out of the surface, since the pressures or tensions are proportional to the 
squares of the field magnitudes.   

 
If we want to know the total magnetic force transmitted to the interior of this imaginary 
box in the up-down direction, we add these two transmitted stresses. If the magnetic 
field is homogeneous, this total magnetic force transmitted to the interior of the box in 
the up-down direction is a pull upward plus an equal and opposite pull downward, and 
adds to zero.    
 
 
8.7  Applications 
 
There are many applications involving charged particles moving through a uniform 
magnetic field.  
 
8.7.1 Velocity Selector 
 
In the presence of both electric field E


 and magnetic field B


, the total force on a 

charged particle is 
     


F = q(


E + v ×


B) . (8.7.1) 

 
This is known as the Lorentz force law. By combining the two fields, particles that move 
with a certain velocity can be selected. This was the principle used by J. J. Thomson to 
measure the charge-to-mass ratio of the electrons. In Figure 8.7.1 the schematic diagram 
of Thomson’s apparatus is depicted.  
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Figure 8.7.1 Thomson’s apparatus 
 
The electrons with charge q e= −  and mass m are emitted from the cathode C and then 
accelerated toward slit A. Let the potential difference between A and C be A CV V V− = Δ . 
The change in potential energy is equal to  ΔU = qΔV = −eΔV . The change in kinetic 
energy is   ΔK = mv2 / 2 . Because there is no work done by external forces, (the electric 
field is considered part of the system), the energy is constant and so  ΔK = −ΔU . 
Therefore  
   mv2 / 2 = eΔV  (8.7.2) 
 
Thus, the speed of the electrons is given by 
 

 2e Vv
m
Δ= . (8.7.3) 

 
If the electrons then pass through a region where there exists a downward uniform 
electric field, the negatively charged electrons will be deflected upward. However, if in 
addition to the electric field, a magnetic field directed into the page is also applied, then 
the electrons will experience an additional downward magnetic force e− ×v B

 . When the 
two forces exactly cancel, the electrons will move in a straight path. From Eq. 8.7.1, we 
see that when the condition for the cancellation of the two forces is given by eE evB= , 
which implies  

 Ev
B

= . (8.7.4) 

 
In other words, only those particles with speed /v E B= will be able to move in a 
straight line. Combining the two equations, we obtain 
 

 
2

22( )
e E
m V B

=
Δ

. (8.7.5) 

 
By measuring E , VΔ , and B , the charge-to-mass ratio can be readily determined. The 
most precise measurement to date is 11/ 1.758820174(71) 10  C/kge m = × . 
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8.7.2 Mass Spectrometer 
 

Various methods can be used to measure the mass of an atom. One possibility is through 
the use of a mass spectrometer. The basic feature of a Bainbridge mass spectrometer is 
illustrated in Figure 8.7.2. A particle carrying a charge +q is first sent through a velocity 
selector.  
 

 
 

Figure 8.7.2 A Bainbridge mass spectrometer 
 
The applied electric and magnetic fields satisfy the relation E vB=  so that the trajectory 
of the particle is a straight line. Upon entering a region where a second magnetic field 
0B


 pointing into the page has been applied, the particle will move in a circular path with 
radius  r  and eventually strike the photographic plate. Using Eq. (8.5.4), we have 
 

 
0

mvr
qB

= . (8.7.6) 

 
Because / ,v E B=  the mass of the particle can be written as 
 

 0 0qB r qB Brm
v E

= = . (8.7.7) 

 
 
8.8  Summary 
 
 

• The magnetic force acting on a charge q traveling at a velocity v  in a magnetic 
field B


 is defined by expression 
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 B q= ×F v B

  .  
 
• The magnetic force acting on a wire of length  s  carrying a steady current I in a 

magnetic field B


, where   
s  points in the direction of the current is 

 
    


FB = Is ×


B .  

 
• The magnetic force BdF


 generated by a small portion of current I of length ds  in 

a magnetic field B


 is 
 Bd I d= ×F s B

    
 

• The torque  

τ  acting on a close loop of wire of area A carrying a current I in a 

uniform magnetic field B


 is  
    


τ = I


A ×

B ,  

  
where A


 is a vector, which has a magnitude of A and a direction perpendicular 

to the loop. 
 

• The magnetic dipole moment  

µ  of a closed loop of wire of area A carrying a 

current I  is given by 
    


µ = I


A .  

 
• The torque exerted on a magnetic dipole  


µ  placed in an external magnetic field 

B


 is  
   


τ =

µ ×

B .  

 
• The potential energy of a magnetic dipole placed in a magnetic field is  

 
    U = −


µ ⋅

B .  

 
• If a particle of charge q and mass m enters a magnetic field of magnitude B with 

a velocity v  perpendicular to the magnetic field lines, the radius of the circular 
path that the particle follows is given by 

 

 
| |
mvr
q B

= .  

 
and the angular speed of the particle is  

 

 | |q B
m

ω = .  



 
 

8-28 

 
• As predicted in Section 1.1.2, if we look at the shape of magnetic field lines for the 

total magnetic field, as Faraday did, the magnetic forces transmitted by fields can be 
understood at an intuitive level by analogy to the more familiar forces exerted by 
strings and rubber bands.   

 
 
8.9  Problem-Solving Tips 
 
We have shown that in the presence of both magnetic field B


 and the electric field E


, 

the total force acting on a moving particle with charge q is ( )e B q= + = + ×F F F E v B
     , 

where v  is the velocity of the particle. The direction of BF


 involves the cross product of 

v  and B


, based on the right-hand rule. In Cartesian coordinates, the unit vectors î , ĵ , 
and k̂  satisfy the following properties 
 

   

î × ĵ = k̂,   ̂j× k̂ = î,   k̂ × î = ĵ

ĵ× î = −k̂,   k̂ × ĵ = − î,   î × k̂ = − ĵ

î × î = ĵ× ĵ = k̂ × k̂ =

0.

 

 
For ˆ ˆ ˆ

x y zv v v= + +v i j k  and ˆ ˆ ˆ
x y zB B B= + +B i j k


, the cross product may be obtained as 

 
ˆ ˆ ˆ

ˆ ˆ ˆ( ) ( ) ( )x y z y z z y z x x z x y y x

x y z

v v v v B v B v B v B v B v B
B B B

× = = − + − + −
i j k

v B i j k
 . 

 
If only the magnetic field is present, and v  is perpendicular to B


, then the trajectory is a 

circle with a radius / | |r mv q B= , and an angular speed | | /q B mω = .  
 
When dealing with a more complicated case, it is useful to work with individual force 
components. For example, 
 
 ( )x x x y z z yF ma qE q v B v B= = + −  
 
8.10 Solved Problems 
 
8.10.1 Rolling Rod 
 
A rod with a mass m and a radius R is mounted on two parallel rails of length a 
separated by a distance  s , as shown in the Figure 8.9.1. The rod carries a current I and 
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rolls without slipping along rails, which are placed in a uniform magnetic field B


 
directed into the page. If the rod is initially at rest, what is its speed as it leaves the rails? 
 

 
 

Figure 8.9.1 Rolling rod in uniform magnetic field 
 
Solution: The total work done by the magnetic force on the rod as it moves through the 
region is 
 

    
W =


FB∫ ⋅ d s = FBa = (IsB)a . (8.10.1) 

 
By the work-energy theorem, W must be equal to the change in kinetic energy 
 

 2 21 1
2 2

K mv IωΔ = + , (8.10.2) 

 
where both translation and rolling are involved. Since the moment of inertia of the rod is 
given by 2 / 2I mR= , and the condition of rolling without slipping implies /v Rω = , we 
have  

 
22

2 2 2 21 1 1 1 3
2 2 2 2 4 4

mR vI Ba mv mv mv mv
R

⎛ ⎞⎛ ⎞= + = + =⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠
 . (8.10.3) 

 
Thus, the speed of the rod as it leaves the rails is  
 

 4
3
I Bav
m

=  . (8.10.4) 

 
But wait! Didn’t we say that magnetic forces do no work because they are always 
perpendicular to the velocity of the moving charges? What’s going on here?   
 
Let’s first write the current in the rod as  I = λs , where λ  is the charge density in the 
wire and     

u = −u k̂  is the velocity of the charges. Using the coordinate system shown in 
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Figure 8.9.1, the magnetic force acting on a small segment of charge  dq  moving with 
speed     

u = −u k̂  is given by 
 
 

    
d

FB,1 = dqu ×


B = dqu(− k̂) × (−B î) = dquB ĵ . (8.10.5) 

 
This is not the total force because once the rod is moving in the horizontal direction with 
speed     

w = w ĵ , the magnetic field exerts an additional force on the charge  dq  in the rod 
given by 
 

    
d

FB,2 = dq w ×


B = dq(w ĵ) × (−B î) = dqwB k̂ . (8.10.6) 

 
The force 

    
d

FB,2 is in the direction opposes the flow of charge, so there must be some 

source of emf that does work on the moving charges to keep the current steady. Note 
that the sum of these forces  
 

    
d

FB = d


FB,1 + d


FB,2 = dqwB k̂ + dquB ĵ = dqB(wk̂ + u ĵ) , 

 
is perpendicular to the velocity     

v = w ĵ + u k̂ , 
 

    d

FB ⋅
v = dqB(wk̂ + u ĵ) ⋅ (w ĵ + u k̂) = 0 . 

 
The magnetic force does no work.  The kinetic changes so what agent is doing the work? 
If we integrate the vertical force over the wire, we find that 
 
 

    


FB,2 = d


FB,2

charge
∫ = dqwB k̂

charge
∫ = qwB k̂ = λswB k̂ , (8.10.7) 

 
where  q = λs  is the total charge in the length  s . The work done by the emf must oppose 
this vertical force in order to keep a steady current. In a time  dt , the charges moves 
downward a vertical distance     d

s = −udtk̂ , hence the electromotive force must do work  
 
 

    
ε = (−


FB,2 ) ⋅ d∫ s = (−λswBk̂) ⋅ (−udtk̂)∫ = λsuB wdt∫ = λsuBa = IsBa , (8.10.8) 

 
where  

a = wdt∫  is the distance the rod rolled and  I = λs . So the work done by the emf 
force is exactly what we at first thought was the work done by the magnetic force. 
   
 
8.10.2  Suspended Conducting Rod 
 
A conducting rod having a linear mass density λ (mass per unit length) is suspended by 
two flexible wires in a uniform magnetic field B


 which points out of the page, as shown 

in Figure 8.9.2. 
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Figure 8.9.2 Suspended conducting rod in uniform magnetic field 
 
If the tension on the wires is zero, what are the magnitude and the direction of the 
current in the rod?  
 
Solution: In order that the tension in the wires is zero, the magnetic force    


FB = Is ×


B  

acting on the conductor must exactly cancel the downward gravitational force 
ˆ

g mg= −F k


. For BF


 to point in the positive  z -direction, we must have     
s = −s ĵ , i.e., the 

current flows to the left, so that  
 
     


FB = Is ×


B = I(−s ĵ) × (B î) = − IsB( ĵ× î) = + IB k̂ . (8.10.9) 

 
The magnitude of the current can be obtain from  
 
  IsB = mg . (8.10.10) 
 
Therefore the current in the wire is 

 
 
I = mg

Bs
=
λg
B

, (8.10.11) 

where  m = λs . 
 
 
8.10.3 Charged Particles in Magnetic Field 
 
Particle A with charge q and mass Am  and particle B with charge 2q and mass Bm , are 
accelerated from rest by a potential difference VΔ , and subsequently deflected by a 
uniform magnetic field into semicircular paths. The radii of the trajectories by particle A 
and B are R and 2R, respectively. The direction of the magnetic field is perpendicular to 
the velocity of the particle. What is their mass ratio? 
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Solution: The kinetic energy gained by the charges is equal to  
 

 21
2
mv q V= Δ , (8.10.12) 

which yields 

 2q Vv
m
Δ= . (8.10.13) 

 
The charges move in semicircles, since the magnetic force points radially inward and 
therefore by Newton’s Second Law, 

 
2mv qvB
r

= . (8.10.14) 

 
The radius of the circle can be readily obtained as: 
 

 2 1 2mv m q V m Vr
qB qB m B q

Δ Δ= = = , (8.10.15) 

 
Therefore r is proportional to 1/ 2( / )m q . The mass ratio can then be obtained from 
 

 
1/ 2 1/ 2

1/ 2 1/ 2

( / ) ( / )      
( / ) 2 ( / 2 )

A A A A

B B B B

r m q m qR
r m q R m q

= ⇒ = , (8.10.16) 

 
therefore 

 1
8

A

B

m
m

= . (8.10.17) 

 
 
8.10.4 Ring of Current in the B Field of a Dipole (see also Section 8.13) 
 
A bar magnet with its north pole up is placed along the symmetric axis below a 
horizontal conducting ring carrying current I, as shown in the Figure 8.9.3. At the 
location of the ring, the magnetic field makes an angle θ  with the vertical. What is the 
force on the ring? 
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Figure 8.9.3 A bar magnet approaching a conducting ring 
 
Solution: The magnetic force acting on a small differential current-carrying element 

   I d s  on the ring is given by Bd Id= ×F s B
  , where B


 is the magnetic field due to the 

bar magnet. Using cylindrical coordinates   (r̂,φ̂ , ẑ)  as shown in Figure 8.9.4, we have 
 
     d


FB = I(−dsφ̂) × (Bsinθ r̂ + Bcosθ ẑ) = (IBds)sinθ ẑ − (IBds)cosθ r̂ . (8.10.18) 

 
Due to the axial symmetry, the radial component of the force will exactly cancel, and we 
are left with the z-component. 
 

 
 

Figure 8.9.4 Magnetic force acting on the conducting ring 
 
The total force acting on the ring then becomes 
 
 

    

FB = (IBsinθ )ẑ ds∫ = (2πrIBsinθ) ẑ . (8.10.19) 

 
The force points in the +z direction and therefore is repulsive. 
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8.11 Conceptual Questions 
 
1. Can a charged particle move through a uniform magnetic field without experiencing 
any force? Explain. 
 
2. If no work can be done on a charged particle by the magnetic field, how can the 
motion of the particle be influenced by the presence of a field? 
 
3. Suppose a charged particle is moving under the influence of both electric and 
magnetic fields.  How can the effect of the two fields on the motion of the particle be 
distinguished? 
 
4. What type of magnetic field can exert a force on a magnetic dipole? Is the force 
repulsive or attractive? 
 
5. If a compass needle is placed in a uniform magnetic field, is there a magnetic force 
acting on the needle? Is there a torque? 
 
 
8.12 Additional Problems 
 
8.12.1  Force Exerted by a Magnetic Field 
 
The electrons in the beam of television tube have an energy of 12 keV where  

191 eV 1.6 10 J−= × . The tube is oriented so that the electrons move horizontally from 
south to north. At MIT, the Earth's magnetic field points roughly vertically down (i.e. 
neglect the component that is directed toward magnetic north) and has magnitude  
B ~ 55 10−×  T. 
 
(a) In what direction will the beam deflect? 
 
(b) What is the acceleration of a given electron associated with this deflection?  
[Ans. ~ 1510−  m/s2.] 
 
(c) How far will the beam deflect in moving 0.20 m through the television tube? 
 
 
8.12.2  Magnetic Force on a Current Carrying Wire  
 
A square loop of wire, of length   s = 0.1 m  on each side, has a mass of 50 g and pivots 
about an axis AA' that corresponds to a horizontal side of the square, as shown in Figure 
8.11.1. A magnetic field of 500 G, directed vertically downward, uniformly fills the 
region in the vicinity of the loop. The loop carries a current I so that it is in equilibrium 
at 20θ = ° . 
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Figure 8.11.1 Magnetic force on a current-carrying square loop. 
 
(a) Consider the force on each segment separately and find the direction of the current 
that flows in the loop to maintain the 20°  angle. 
 
(b) Calculate the torque about the axis due to these forces. 
 
(c) Find the current in the loop by requiring the sum of all torques (about the axis) to be 
zero. (Hint: Consider the effect of gravity on each of the 4 segments of the wire 
separately.) [Ans. I ~ 20 A.]  
 
(d) Determine the magnitude and direction of the force exerted on the axis by the pivots.  
 
(e) Repeat part (b) by now using the definition of a magnetic dipole to calculate the 
torque exerted on such a loop due to the presence of a magnetic field. 
 
 
8.12.3  Sliding Bar 
 
A conducting bar of length  s  is placed on a frictionless inclined plane that is tilted at an 
angle θ  from the horizontal, as shown in Figure 8.11.2.  
 

 
 

Figure 8.11.2 Magnetic force on a conducting bar 
 
A uniform magnetic field is applied in the vertical direction. To prevent the bar from 
sliding down, a voltage source is connected to the ends of the bar with current flowing 
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through. Determine the magnitude and the direction of the current such that the bar will 
remain stationary. 
 
 
8.12.4 Particle Trajectory 
 
A particle of charge q−  is moving with a velocity v . It then enters midway between 
two plates where there exists a uniform magnetic field pointing into the page, as shown 
in Figure 8.11.3. 
 

 
 

Figure 8.11.3 Charged particle moving under the influence of a magnetic field 
 
(a) Is the trajectory of the particle deflected upward or downward? 
 
(b) Compute the distance between the left end of the plate and where the particle strikes. 
 
 

8.12.5 Particle Orbits in a Magnetic Field  
 
Suppose the entire  xy -plane to the right of the origin O is filled with a uniform magnetic 
field B


 pointing out of the page, as shown in Figure 8.11.4.  

 

 
Figure 8.11.4 
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Two charged particles, starting in the region   x < 0 , travel along the x-axis in the positive 
x direction, each with speed v, and enter the magnetic field at the origin O.  The two 
particles have the same charge q, but have different masses, 1m  and 2m . When in the 
magnetic field, their trajectories both curve in the same direction, but describe semi-
circles with different radii.  The radius of the semi-circle traced out by particle 2 is 
exactly twice as big as the radius of the semi-circle traced out by particle 1.   
 
(a) Is the charge q of these particles such that 0q > , or is 0q < ?  
 
(b) Derive an expression for the radius 1R  of the semi-circle traced out by particle 1, in 
terms of q, v, B, and 1m .   
 
(c) What is the ratio 2 1/m m ?  
 
(d) Is it possible to apply an electric field E


 in the region 0x >  only, which will cause 

both particles to continue to move in a straight line after they enter the region 0x > ?  If 
so, indicate the magnitude and direction of that electric field, in terms of the quantities 
given.  If not, why not? 
 

8.12.6 Force and Torque on a Current Loop 
 
A current loop consists of a semicircle of radius R and two straight segments of length  s  
with an angle θ  between them. The loop is then placed in a uniform magnetic field 
pointing to the right, as shown in Figure 8.11.5. 
 

 
 

Figure 8.11.5 Current loop placed in a uniform magnetic field 
 
(a) Find the net force on the current loop. 
 
(b) Find the net torque on the current loop. 
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8.12.7 Force on a Wire  
 
A straight wire of length 0.2 m carries a 7.0 A current. It is immersed in a uniform 
magnetic field of 0.1 T whose direction lies 20 degrees from the direction of the current.  
 
(a) What is the direction of the force on the wire? Make a sketch to show your answer.  
 
(b) What is the magnitude of the force? [Ans. ~0.05 N]  
 
(c) How could you maximize the force without changing the field or current? 
 
 
8.12.8 Levitating Wire 
 
A copper wire of diameter 

� 

d carries a current density J


 at the Earth’s equator where the 
Earth’s magnetic field is horizontal, points north, and has magnitude 40.5 10 TB −= × .  
The wire lies in a plane that is parallel to the surface of the Earth and is oriented in the 
east-west direction.  The density and resistivity of copper are 3 38.9 10 kg/mmρ = ×  and 

81.7 10 mρ −= × Ω⋅ , respectively.  
 
(a) How large must J


 be, and which direction must it flow in order to levitate the wire? 

Use 29.8 m/sg =  
 
(b) When the wire is floating how much power will be dissipated per cubic centimeter?  
 
 
8.13 Force Between a Magnetic Dipole and a Ring of Current Simulation 
 
In this section we explore the meaning of Ampere’s Law using a 3D simulation that 
creates imaginary, moveable Amperian loops (closed paths) in the presence of real, 
moveable line currents. This simulation illustrates Ampere's Law for a circular or 
rectangular Amperian loop, in the presence of current carrying wires current currents 
both into and out of the page.   
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      http://peter-edx.99k.org/FloatingCoil.html 
 

Figure 9.14.1 Screen Shot of Ampere’s Law Simulation 
You begin with one a wire carrying current out of the page and one carrying current into 
the page in the scene. You can add additional line currents, or delete all line currents 
present and start again. Left clicking and dragging on the line current can move the line 
currents.  You can choose whether your imaginary Amperian loop is a circle or a 
rectangle, and you can move that loop. You will see tangents to the Amperian loops at 
many points on the loop. At those same points you will see the local magnetic field (blue 
vectors) on the loop due to all the line currents in the scene.  If you left click and drag in 
the view, your perspective will change so that you can see the field vector and tangent 
orientation better. If you want to return to the original view you can "Reset Camera.” 
Use the simulation to verify the following properties of Ampere’s Law.  For the 
Amperian loop, you may choose either the circle or the rectangle.  
   

(1)  If line currents do not carry current through an Amperian loop, the line integral 
of the magnetic field around the loop flux through is zero.  

 
(2)  If line currents do carry current through an Amperian loop, the line integral of 

the magnetic field around the loop is positive or negative depending on the 
direction of the total current penetrating the surface of the loop. 

  
Then use the simulation to answer the two following questions.  Consider two line 
currents. Place one of the charged line currents inside your Amperian loop and the other 
outside. 
 

(1) Is the magnetic field at any point on the loop due only to the line currents that 
that are inside that loop?  

 
(2) Is the dot product of the magnetic field with the local tangent at any point on the 

loop due only to the line currents that are inside the loop? 
 

(3) Is the total line integral of the magnetic field around the entire Amperian loop 
due only to the line currents that are inside the loop? 

 
 
 




