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Current and Resistance 

 
6.1 Electric Current 
 
Electric currents are flows of electric charge. Suppose a collection of charges is moving 
perpendicular to a surface of area A, as shown in Figure 6.1.1. 
 

 
 

Figure 6.1.1 Charges moving through a cross section. 
 
The electric current is defined to be the rate at which charges flow across any cross-
sectional area. If an amount of charge ΔQ passes through a surface in a time interval Δt, 
then the average current   

Iavg  is given by 

 
  
Iavg =

ΔQ
Δt

. (6.1.1) 

 
The SI unit of current is the ampere  [A] , with 1 A = 1 coulomb/sec.  Common currents 
range from mega-amperes in lightning to nano-amperes in your nerves. In the limit 
  Δt → 0, the instantaneous current I may be defined as 
 

 
 
I = dQ

dt
. (6.1.2) 

 
Because flow has a direction, we have implicitly introduced a convention that the 
direction of current corresponds to the direction in which positive charges are flowing. 
The flowing charges inside wires are negatively charged electrons that move in the 
opposite direction of the current. Electric currents flow in conductors: solids (metals, 
semiconductors), liquids (electrolytes, ionized) and gases (ionized), but the flow is 
impeded in non-conductors or insulators. 
 
 
6.1.1 Current Density 
 
To relate current, a macroscopic quantity, to the microscopic motion of the charges, let’s 
examine a conductor of cross-sectional area A, as shown in Figure 6.1.2. 
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Figure 6.1.2 A microscopic picture of current flowing in a conductor. 
 
Let the total current through a surface be written as 
 
 

   
I =


J ⋅ d

A∫∫ . (6.1.3) 

 
where   


J  is the current density (the SI units of current density are  [A/m2] ). If q is the 

charge of each carrier, and n is the number of charge carriers per unit volume, the total 
amount of charge in this section is then   ΔQ = q(nAΔx) . Suppose that the charge carriers 
move with an average speed  vd ; then the displacement in a time interval  Δt  will be 

 Δx = vdΔt , which implies 

 
  
Iavg =

ΔQ
Δt

= nqvd A . (6.1.4) 

 
The average speed  vd  at which the charge carriers are moving is known as the drift 
speed. Actually an electron inside the conductor does not travel in a straight line; instead, 
its path is rather erratic, as shown in Figure 6.1.3. 
 

 
 

Figure 6.1.3 Motion of an electron in a conductor. 
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From the above equations, the current density   

J  can be written as 

 
    


J = nqvd . (6.1.5) 

 
Thus, we see that   


J  and    

vd  point in the same direction for positive charge carriers, in 
opposite directions for negative charge carriers. 
 
To find the drift velocity of the electrons, we first note that an electron in the conductor 
experiences an electric force    


Fe = −e


E  that gives an acceleration 

 

 
   

a =

Fe

me

= − e

E

me

. (6.1.6) 

 
Denote the velocity of a given electron immediate after a collision by    

v i . The velocity of 
the electron immediately before the next collision is then given by 
 

 
   

v f =
v i +
a t = v i −

e

E

me

t  (6.1.7) 

 
where t is the time traveled.  The average of 

   
v f  over all time intervals is 

 

 
   

v f = v i − e

E

me

t  (6.1.8) 

 
which is equal to the drift velocity    

vd . Because in the absence of electric field, the 

velocity of the electron is completely random, it follows that 
    
v i = 0 . If  

τ = t  is the 
average characteristic time between successive collisions (the mean free time), we have  
 

 
   

vd = v f = − e

E

me

τ . (6.1.9) 

 
The current density in Eq. (6.1.5) becomes 
 

 
    


J = −nevd = −ne − e


E

me

τ
⎛

⎝⎜
⎞

⎠⎟
= ne2τ

me


E . (6.1.10) 

 
Note that   


J  and   


E  will be in the same direction for either negative or positive charge 

carriers. 
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6.2 Ohm’s Law 
 
In many materials, the current density is linearly dependent on the external electric field 
  

E , 
   


J = σ


E , (6.2.1) 

   
where σ  is called the conductivity of the material. The above equation is known as the 
(microscopic) Ohm’s law. A material that obeys this relation is said to be ohmic; 
otherwise, the material is non-ohmic.  
 
Comparing Eq. (6.2.1) with Eq. (6.1.10), we see that the conductivity can be expressed as 
 

 
  
σ = ne2τ

me

. (6.2.2) 

 
To obtain a more useful form of Ohm’s law for practical applications, consider a segment 
of straight wire of length l and cross-sectional area A, as shown in Figure 6.2.1. 
 

 
Figure 6.2.1 A uniform conductor of length l and potential difference  ΔV =Vb −Va . 

 
Suppose a potential difference  ΔV =Vb −Va  is applied between the ends of the wire, 
creating an electric field   


E  and a current I. Assuming   


E  to be uniform, we then have 

 

 
   
ΔV =Vb −Va = −


E ⋅ ds = El

a

b

∫ . (6.2.3) 

 
The magnitude of the current density can then be written as 
 

 
 
J = σ E = σ ΔV

l
⎛
⎝⎜

⎞
⎠⎟

. (6.2.4) 

 
With   J = I / A , the potential difference becomes 
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ΔV = l

σ
J = l

σ A
⎛
⎝⎜

⎞
⎠⎟

I = RI , (6.2.5) 

 
where the resistance is given by 

 
 
R = ΔV

I
= l
σ A

. (6.2.6) 

 
The equation 
  ΔV = IR  (6.2.7) 
 
is the “macroscopic” version of the Ohm’s law. The SI unit of R is the ohm  [Ω] , (Greek 
letter Omega), where 

 
 
1Ω ≡ 1 V

1A
. (6.2.8) 

 
Once again, a material that obeys the above relation is ohmic, and non-ohmic if the 
relation is not obeyed. Most metals, with good conductivity and low resistivity, are 
ohmic. We shall focus mainly on ohmic materials.  I  ΔV  

 

    
 

Figure 6.2.2 Ohmic vs. Non-ohmic behavior. 
 
The resistivity ρ  of a material is defined as the reciprocal of conductivity, 
 

 
  
ρ = 1

σ
=

me

ne2τ
. (6.2.9) 

 
From the above equations, we see that ρ  can be related to the resistance R of an object 
by 

 
  
ρ = E

J
= ΔV / l

I / A
= RA

l
  

or 

 
 
R = ρl

A
. (6.2.10) 
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The resistivity of a material actually varies with temperature T. For metals, the variation 
is linear over a large range of T:   
 
 

  
ρ = ρ0 1+α(T − T0 )⎡⎣ ⎤⎦ , (6.2.11) 

  
where α is the temperature coefficient of resistivity. Typical values of ρ ,  σ  and α  
(at 20°C ) for different types of materials are given in the Table below. 
 

Material 
Resistivity ρ  

( Ω⋅m ) 
Conductivity σ  

 (Ω⋅m)−1  
Temperature 

Coefficient α   (°C)−1  
Elements 

Silver  1.59 ×10−8   6.29 ×107  0.0038 

Copper  1.72 ×10−8   5.81×107  0.0039 
Aluminum  2.82 ×10−8   3.55×107  0.0039 

Tungsten  5.6 ×10−8   1.8 ×107  0.0045 

Iron  10.0 ×10−8   1.0 ×107  0.0050 
Platinum  10.6 ×10−8   1.0 ×107  0.0039 

Alloys 
Brass  7 ×10−8   1.4 ×107  0.002 

Manganin  44 ×10−8   0.23×107   1.0 ×10−5  
Nichrome  100 ×10−8   0.1×107  0.0004 

Semiconductors 
Carbon (graphite)  3.5×10−5   2.9 ×104  −0.0005 

Germanium (pure) 0.46 2.2 −0.048 
Silicon (pure) 640  1.6 ×10−3  −0.075 

Insulators 
Glass  1010 −1014   10−14 −10−10   

Sulfur  1015   10−15   
Quartz (fused)  75×1016   1.33×10−18   
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6.3 Summary 
 

• The electric current  I  is defined as: 
 

 
 
I = dQ

dt
.  

 
• The average current   

Iavg  in a conductor is  
 
   

Iavg = nqvd A   
  

where n is the number density of the charge carriers, q is the charge each carrier 
has,  vd is the drift speed, and  A is the cross-sectional area. 
 

• The current density   

J  through the cross sectional area of the wire is 

 
    


J = nqvd .  

 
• Microscopic Ohm’s law: the current density is proportional to the electric field, 

and the constant of proportionality is called conductivity σ : 
 
   


J = σ


E . 

  
• The reciprocal of conductivity σ  is called resistivity ρ : 

 

 
 
ρ = 1

σ
. 

 
• Macroscopic Ohm’s law: The resistance R of a conductor is the ratio of the 

potential difference  ΔV  between the two ends of the conductor and the current I: 
 

 
 
R =

ΔV
I

. 

 
• Resistance is related to resistivity by 
 

 
 
R =

ρl
A

  

 
 

where  l  is the length and  A  is the cross-sectional area of the conductor. 
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• The drift velocity    
vd  of an electron in the conductor is 

 

 
   

vd = −
e

E

me

τ   

 
where  me  is the mass of an electron, and τ  is the average time between 
successive collisions. 

 
• The resistivity of a metal is related to τ  by  
 

 
  
ρ =

1
σ

=
me

ne2τ
.  

 
• The temperature variation of resistivity of a conductor is 

 
 

  
ρ = ρ0 1+α T − T0( )⎡⎣ ⎤⎦   

  
 where α is the temperature coefficient of resistivity. 
 

• Power, or rate at which energy is delivered to the resistor is  
 

 
  
P = IΔV = I 2 R =

ΔV( )2

R
. 

   
6.4 Solved Problems 
 

 
6.4.1 Resistivity of a Cable 
 
A 3000-km long cable consists of seven copper wires, each of diameter 0.73 mm, 
bundled together and surrounded by an insulating sheath. Calculate the resistance of the 
cable. Use  3×10−6Ω⋅cm  for the resistivity of the copper. 
 
Solution: The resistance R of a conductor is related to the resistivity ρ by   R = ρl / A , 
where l and A are the length of the conductor and the cross-sectional area, respectively. 
The cable consists of N = 7 copper wires, and so the total cross sectional area is  
 

 
  
A = Nπr 2 = N πd 2

4
= 7

π (0.073cm)2

4
.  

 
The resistance then becomes 
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R =
ρl
A

=
3×10−6Ω⋅cm( ) 3×108cm( )

7π 0.073cm( )2
/ 4

= 3.1×104 Ω .  

 
 
6.4.2 Charge at a Junction 
 
Show that the total amount of charge at the junction of the two materials in Figure 6.4.1 
is   ε0 I(σ 2

−1 − σ1
−1) , where I is the current flowing through the junction, and  σ1  and  σ 2  are 

the conductivities for the two materials. 
 

 
 

Figure 6.4.1 Charge at a junction. 
 

Solution: In a steady state of current flow, the normal component of the current density 

  J


 must be the same on both sides of the junction. Since  J = σE , we have   σ1E1 = σ 2 E2   
or 

 
  
E2 =

σ1

σ 2

⎛

⎝⎜
⎞

⎠⎟
E1 .  

 
Let the charge on the interface boundary be   qb , we have, from the Gauss’s law: 
 

 
    


E ⋅ d

A

S
∫∫ = E2 − E1( ) A =

qb

ε0

. 

Thus 

 
  
E2 − E1 =

qb

Aε0

.  

 
Substituting the expression for  E2  from above yields  
  

 
  
qb = ε0 AE1

σ1

σ 2

−1
⎛

⎝⎜
⎞

⎠⎟
= ε0 Aσ1E1

1
σ 2

−
1
σ1

⎛

⎝⎜
⎞

⎠⎟
.  
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The current is 
  
I = JA = σ1E1( ) A , therefore the amount of charge on the interface 

boundary is 

 
  
qb = ε0 I 1

σ 2

−
1
σ1

⎛

⎝⎜
⎞

⎠⎟
.  

  
 

6.4.3 Drift Velocity 
 

The resistivity of seawater is about 25  Ω⋅cm . The charge carriers are chiefly  Na+  and 

 Cl−  ions, and of each there are about  3×1020 / cm3 . If we fill a plastic tube 2 meters long 
with seawater and connect a 12-volt battery to the electrodes at each end, what is the 
resulting average drift velocity of the ions, in cm/s? 
 
Solution: 
 
The current in a conductor of cross sectional area A is related to the drift speed  vd  of the 
charge carriers by  
  I = enAvd ,  
 
where n is the number of charges per unit volume. We can then rewrite the Ohm’s law as 
 

 
 
V = IR = neAvd( ) ρl

A
⎛
⎝⎜

⎞
⎠⎟
= nevdρl .   

The drift velocity is then 

 
 
vd =

V
neρl

.  

Substituting the values, we have 
 

 

  

vd =
12V

(6 ×1020cm-3)(1.6 ×10−19C)(25Ω⋅cm)(200 cm)

= 2.5×10−5 V ⋅cm
C ⋅Ω

= 2.5×10−5 cm
s

.
 . 

 
In converting the units we have used  
 

 

V
Ω⋅C

=
V
Ω

⎛
⎝⎜

⎞
⎠⎟

1
C
=

A
C

= s−1 . 
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6.4.4 Resistance of a Truncated Cone 
 
Consider a material of resistivity ρ in a shape of a truncated cone of altitude h, and radii a 
and b, for the right and the left ends, respectively, as shown in the Figure 6.4.2. Assuming 
that the current is distributed uniformly throughout the cross-section of the cone, what is 
the resistance between the two ends? 
 

 
 

Figure 6.4.2 A truncated Cone. 
 

 

 
 

   Figure 6.4.3 

Solution: Consider a thin disk of radius r at a distance x from the left end. From the 
geometry illustrated in Figure 6.4.3, we have 
 

 

b − r
x

=
b − a

h
. 

 
We can solve for the radius of the disk 

 
  
r = (a − b)

x
h
+ b .  

 
The resistance R is related to resistivity ρ  by   R = ρl / A , where l is the length of the 
conductor and A is the cross section. The contribution to the resistance from the disk 
having a thickness dy is 

 
  
dR =

ρ dx
πr 2 =

ρ dx
π[b + (a − b)x / h]2

.  

 
Straightforward integration then yields 
 

 
  
R =

ρ dx
π[b + (a − b)x / h]20

h

∫ =
ρh
πab

,  

where we have used 

 
  

du
(αu + β)2∫ = −

1
α(αu + β)

. 

 
Note that if  b = a , then area is   A = πa2 , and set  h = l , Eq.(6.2.10) is reproduced. 
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6.4.5 Resistance of a Hollow Cylinder 
 
Consider a hollow cylinder of length L and inner radius  a  and outer radius  b , as shown 
in Figure 6.4.4. The material has resistivity ρ . 
 

 
 

Figure 6.4.4 A hollow cylinder. 
 
 
(a) Suppose a potential difference is applied between the ends of the cylinder and 
produces a current flowing parallel to the axis.  What is the resistance measured? 
 
(b) If instead the potential difference is applied between the inner and outer surfaces so 
that current flows radially outward, what is the resistance measured? 
 
Solution: 
 
(a) When a potential difference is applied between the ends of the cylinder, the flow of 
charge is parallel to the axis. In this case, the cross-sectional area is   A = π (b2 − a2 ) , and 
the resistance is given by 

 
  
R =

ρL
A

=
ρL

π (b2 − a2 )
.  

 
(b) Consider a differential element, which is made up of a thin cylinder of inner radius  r  
and outer radius  r + dr  and length  L . Its contribution to the resistance of the system is 
given by 

 
  
dR =

ρ dl
A

=
ρ dr
2πrL

,  

 
where   A = 2πrL  is the area normal to the direction of current. The total resistance of the 
system becomes 

 
  
R =

ρ dr
2πrLa

b

∫ =
ρ

2πL
ln

b
a

⎛
⎝⎜

⎞
⎠⎟

. 
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6.5 Conceptual Questions 
 
1. Two wires A and B of circular cross-section are made of the same metal and have 

equal lengths, but the resistance of wire A is four times greater than that of wire B.  
Find the ratio of their cross-sectional areas.   

 
2. From the point of view of atomic theory, explain why the resistance of a material 

increases as its temperature increases. 
 
 
 
6.6 Additional Problems 
 
6.6.1 Current and Current Density 
 
A sphere of radius 10 mm that carries a charge of  8 nC = 8×10−9C  is whirled in a circle 
at the end of an insulated string. The angular frequency is  100π s-1 . 

(a) What is the basic definition of current in terms of charge? 
 
(b) What average current does this rotating charge represent?  
 
(c) What is the average current density over the area traversed by the sphere? 
 
6.6.2 Resistance of a Cone  

     
 

Figure 6.6.1 
 
A copper resistor of resistivity ρ  is in the shape of a cylinder of radius b and length   L1  
appended to a truncated right circular cone of length   L2  and end radii b and a as shown in 
Figure 6.6.1. 

 
(a) What is the resistance of the cylindrical portion of the resistor?  
 
(b) What is the resistance of the entire resistor? (Hint: For the tapered portion, it is 
necessary to write down the incremental resistance dR of a small slice, dx, of the resistor 
at an arbitrary position, x, and then to sum the slices by integration. If the taper is small, 
one may assume that the current density is uniform across any cross section.)  
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(c) Show that your answer reduces to the expected expression if a = b.  
 
(d) If   L1 = 100 mm ,   L2 = 50 mm ,   a = 0.5 mm , and   b = 1.0 mm , what is the resistance?  
 
6.6.3 Current Density and Drift Speed 
 
(a) A group of charges, each with charge q, moves with velocity   

v .  The number of 
particles per unit volume is n. What is the current density   


J  of these charges, in 

magnitude and direction?  Make sure that your answer has units of  A ⋅m-2 . 
 
(b) We want to calculate how long it takes an electron to get from a car battery to the 
starter motor after the ignition switch is turned. Assume that the current flowing is 
 115 A , and that the electrons travel through copper wire with cross-sectional area 
 31.2 mm2  and length  85.5 cm .  What is the current density in the wire?  The number 
density of the conduction electrons in copper is  8.49 ×1028  /m3 . Given this number 
density and the current density, what is the drift speed of the electrons?  How long does it 
take for an electron starting at the battery to reach the starter motor? [Ans.: 
 3.69 ×106  A/m2 ,  2.71×10−4  m/s ,  52.5 min .] 
 
6.6.4 Current Sheet 
 
A current sheet, as the name implies, is a plane containing currents flowing in one 
direction in that plane. One way to construct a sheet of current is by running many 
parallel wires in a plane, say the  yz -plane, as shown in Figure 6.6.2(a).  Each of these 
wires carries current I out of the page, in the   − ĵ  direction, with n wires per unit length in 
the z-direction, as shown in Figure 6.6.2(a). Then the current per unit length in the z 
direction is  nI . We will use the symbol  K  to signify current per unit length, so that 
 K = nl  here.   
 

  
       (a)              (b) 

 
Figure 6.6.2 A current sheet. 

 
Another way to construct a current sheet is to take a non-conducting sheet of charge with 
fixed charge per unit area σ and move it with some speed in the direction you want 
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current to flow.  For example, in Figure 6.6.2(b), we have a sheet of charge moving out of 
the page with speed  v .  The direction of current flow is out of the page.   
 
(a) Show that the magnitude of the current per unit length in the z direction,  K , is given 
by  σv . Check that this quantity has the proper dimensions of current per length.  This is 
in fact a vector relation,     


K(t) = σ v(t) , since the sense of the current flow is in the same 

direction as the velocity of the positive charges.   
 
(b) A belt transferring charge to the high-potential inner shell of a Van de Graaff 
accelerator at the rate of 2.83 mC/s. If the width of the belt carrying the charge is 
 50 cm and the belt travels at a speed of  30 m/s , what is the surface charge density on the 
belt? [Ans.: 189 µC/m2] 
 
6.6.5 Resistance and Resistivity 
 
A wire with a resistance of 6.0 Ω is drawn out through a die so that its new length is three 
times its original length. Find the resistance of the longer wire, assuming that the 
resistivity and density of the material are not changed during the drawing process. [Ans.:  
54 Ω]. 
 
6.6.6 Charge Accumulation at the Interface 
 
Figure 6.6.3 shows a three-layer sandwich made of two resistive materials with 
resistivities  ρ1  and  ρ2 .  From left to right, we have a layer of material with resistivity  ρ1  
of width   d / 3 , followed by a layer of material with resistivity  ρ2 , also of width   d / 3 , 
followed by another layer of the first material with resistivity  ρ1 , again of width   d / 3 .   
 

 
 

Figure 6.6.3 Charge accumulation at interface. 
 
The cross-sectional area of all of these materials is A.  The resistive sandwich is bounded 
on either side by metallic conductors (black regions). Using a battery (not shown), we 
maintain a potential difference V across the entire sandwich, between the metallic 
conductors.  The left side of the sandwich is at the higher potential (i.e., the electric fields 
point from left to right).   
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There are four interfaces between the various materials and the conductors, which we 
label a through d, as indicated on the sketch.  A steady current I is directed in the  
sandwich from left to right, corresponding to a current density   J = I / A . 
 
 
(a) What are the electric fields    


E1  and    


E2  in the two different dielectric materials?  To 

obtain these fields, assume that the current density is the same in every layer.  Why must 
this be true? [Ans.:  All fields point to the right,   E1 = ρ1I / A ,   E2 = ρ2 I / A ; the current 
densities must be the same in a steady state, otherwise there would be a continuous 
buildup of charge at the interfaces to unlimited values.] 
 
(b) What is the total resistance R of this sandwich?  Show that your expression reduces to 
the expected result if  ρ1 = ρ2 = ρ . [Ans.:

  
R = d 2ρ1 + ρ2( ) / 3A ; if  ρ1 = ρ2 = ρ , then 

  R = d ρ / A , as expected.] 
 
(c) As we move from right to left, what are the changes in potential across the three 
layers, in terms of V and the resistivities? [Ans.:   Vρ1 / (2ρ1 + ρ2 ) ,   Vρ2 / (2ρ1 + ρ2 ) , 

  Vρ1 / (2ρ1 + ρ2 ) , summing to a total potential drop of V, as required].  
 
(d) What are the charges per unit area,  σ a  through  σ d , at the interfaces?  Use Gauss's 
Law and assume that the electric field in the conducting caps is zero. 
 [Ans.: 

  
σ a = −σ d = 3ε0Vρ1 / d 2ρ1 + ρ2( ) , 

  
σ b = −σ c = 3ε0V ρ2 − ρ1( ) / d 2ρ1 + ρ2( ) .]   

 
(e) Consider the limit  ρ2 >> ρ1 .  What do your answers above reduce to in this limit?  
  
 




