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Current and Resistance
6.1 Electric Current

Electric currents are flows of electric charge. Suppose a collection of charges is moving
perpendicular to a surface of area 4, as shown in Figure 6.1.1.
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Figure 6.1.1 Charges moving through a cross section.

The electric current is defined to be the rate at which charges flow across any cross-
sectional area. If an amount of charge AQ passes through a surface in a time interval A¢,
then the average current I, is given by

AQ
=—, 6.1.1
e At ( )

The SI unit of current is the ampere [A], with I A =1 coulomb/sec. Common currents

range from mega-amperes in lightning to nano-amperes in your nerves. In the limit
At — 0, the instantaneous current / may be defined as

I= Q (6.1.2)
dt

Because flow has a direction, we have implicitly introduced a convention that the
direction of current corresponds to the direction in which positive charges are flowing.
The flowing charges inside wires are negatively charged electrons that move in the
opposite direction of the current. Electric currents flow in conductors: solids (metals,
semiconductors), liquids (electrolytes, ionized) and gases (ionized), but the flow is
impeded in non-conductors or insulators.

6.1.1 Current Density

To relate current, a macroscopic quantity, to the microscopic motion of the charges, let’s
examine a conductor of cross-sectional area 4, as shown in Figure 6.1.2.
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Figure 6.1.2 A microscopic picture of current flowing in a conductor.

Let the total current through a surface be written as
1=”j-d& (6.1.3)

where J is the current density (the SI units of current density are [A/m*]). If ¢ is the

charge of each carrier, and » is the number of charge carriers per unit volume, the total
amount of charge in this section is then AQ = g(n4 Ax). Suppose that the charge carriers

move with an average speed v, ; then the displacement in a time interval Az will be

Ax =v At, which implies

AQ
ave :E:nquA. (6.1.4)

The average speed v, at which the charge carriers are moving is known as the drift

speed. Actually an electron inside the conductor does not travel in a straight line; instead,
its path is rather erratic, as shown in Figure 6.1.3.
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Figure 6.1.3 Motion of an electron in a conductor.
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From the above equations, the current density J can be written as

J=ngv,. (6.1.5)

Thus, we see that J and Vv, point in the same direction for positive charge carriers, in
opposite directions for negative charge carriers.

To find the drift velocity of the electrons, we first note that an electron in the conductor
experiences an electric force Fe = —cE that gives an acceleration

=
o
=

d=-c=-" (6.1.6)

3
3

Denote the velocity of a given electron immediate after a collision by V,. The velocity of
the electron immediately before the next collision is then given by

V. =V +At=v — —¢ (6.1.7)

(5,)=(5.)- £ 619

which is equal to the drift velocity Vv ,. Because in the absence of electric field, the
velocity of the electron is completely random, it follows that <Vl. > =0.Ift= <t> is the

average characteristic time between successive collisions (the mean free time), we have

- - eE
Vd=<vf>=—;er. (6.1.9)
The current density in Eq. (6.1.5) becomes
B} E 2
J=—nevd=—ne[—€—‘r}:nerE. (6.1.10)
me me

Note that J and E will be in the same direction for either negative or positive charge
carriers.
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6.2 Ohm’s Law

In many materials, the current density is linearly dependent on the external electric field
E,

J=0E, (6.2.1)
where o is called the conductivity of the material. The above equation is known as the
(microscopic) Ohm’s law. A material that obeys this relation is said to be ohmic;

otherwise, the material is non-ohmic.

Comparing Eq. (6.2.1) with Eq. (6.1.10), we see that the conductivity can be expressed as

(6.2.2)

To obtain a more useful form of Ohm’s law for practical applications, consider a segment
of straight wire of length / and cross-sectional area 4, as shown in Figure 6.2.1.

Figure 6.2.1 A uniform conductor of length / and potential difference AV =V, -V .

Suppose a potential difference AV =V, -V is applied between the ends of the wire,

creating an electric field E and a current /. Assuming E to be uniform, we then have
b -
AV =V,-V,=-[ E-ds=El. (6.2.3)

The magnitude of the current density can then be written as

J:O'E:G[A—ZVJ. (6.2.4)

With J =1/ A, the potential difference becomes
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AV:LJ:(J%]I:RL (6.2.5)

AV ]
R=—=—. (6.2.6)
I o4
The equation
AV =1IR (6.2.7)

is the “macroscopic” version of the Ohm’s law. The SI unit of R is the ohm [Q], (Greek
letter Omega), where
1V

1Q=—. 6.2.8
A (6.2.8)

Once again, a material that obeys the above relation is ohmic, and non-ohmic if the
relation is not obeyed. Most metals, with good conductivity and low resistivity, are
ohmic. We shall focus mainly on ohmic materials. / AV

I |AV =1IR I/

AV AV

Figure 6.2.2 Ohmic vs. Non-ohmic behavior.

The resistivity p of a material is defined as the reciprocal of conductivity,

1 m,
p=—=—3. (6.2.9)
(o) neT

From the above equations, we see that p can be related to the resistance R of an object
by

_E_AV/I_RA
g I/A4
or
p!
R=" 6.2.10
y ( )
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The resistivity of a material actually varies with temperature 7. For metals, the variation
is linear over a large range of T:

p=p,[1+o(T~T)].

(6.2.11)

where a is the femperature coefficient of resistivity. Typical values of p, o and «
(at20°C) for different types of materials are given in the Table below.

Material Resistivity p Conductivity ¢ Temperature
arera (Q-m) (Q-m)”’ Coefficient & (°C)”"
El t
N e 1.59%10°° 6.29%10 0.0038
Copper 1.72x107® 5.81x10’ 0.0039
Aluminum 2.82x107" 3.55x10’ 0.0039
Tungsten 5.6x10° 1.8x10’ 0.0045
Iron 10.0x107® 1.0x107 0.0050
Platinum 10.6x10°% 1.0x107 0.0039
All
Y rass 7x10°" 1.4x107 0.002
Manganin 44x%10°° 0.23x10’ 1.0x107°
Nichrome 100%x10°% 0.1x10’ 0.0004
Semiconductors s 4
Carbon (graphite) 3.5%10 2.9%x10 -0.0005
Germanium (pure) 0.46 2.2 -0.048
Silicon (pure) 640 1.6x1073 -0.075
Insulators
Glass 1010_1()14 10714_10710
Sulfur 10" 107"
Quartz (fused) 75%10'° 1.33x107"®
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6.3 Summary

The electric current / is defined as:

=%
dt

The average current L in a conductor is

1 gznquA

av;

where 7 is the number density of the charge carriers, ¢ is the charge each carrier
has, v, is the drift speed, and A4 is the cross-sectional area.

The current density J through the cross sectional area of the wire is

J=ngv,.

Microscopic Ohm’s law: the current density is proportional to the electric field,
and the constant of proportionality is called conductivity o :

J=0E.

The reciprocal of conductivity ¢ is called resistivity p:

p=—.
(o2

Macroscopic Ohm’s law: The resistance R of a conductor is the ratio of the
potential difference AV between the two ends of the conductor and the current /:

r=22
1

Resistance is related to resistivity by

where / is the length and A is the cross-sectional area of the conductor.
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* The drift velocity v, of an electron in the conductor is

_ eET
V,=——
“m
e

where m, is the mass of an electron, and 7 is the average time between

successive collisions.

* The resistivity of a metal is related to 7 by

p:—: , -
O nerT

* The temperature variation of resistivity of a conductor is
p=p,|1+a(T-1))]
where « is the temperature coefficient of resistivity.

* Power, or rate at which energy is delivered to the resistor is

(ar)
P=IAV =I’"R=~—".

R
6.4 Solved Problems

6.4.1 Resistivity of a Cable

A 3000-km long cable consists of seven copper wires, each of diameter 0.73 mm,
bundled together and surrounded by an insulating sheath. Calculate the resistance of the

cable. Use 3x107°Q-cm for the resistivity of the copper.

Solution: The resistance R of a conductor is related to the resistivity p by R=pl/ A4,

where / and A4 are the length of the conductor and the cross-sectional area, respectively.
The cable consists of N =7 copper wires, and so the total cross sectional area is

2 2
A= N = Nﬂ;z’ _ 77r(0.013cm) .

The resistance then becomes
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=3.1x10*Q.

pl (3x107°Q-cm)(3x10%em)
R=E = g
77(0.073cm) /4

6.4.2 Charge at a Junction

Show that the total amount of charge at the junction of the two materials in Figure 6.4.1
is g,1(o, ' o, "), where I is the current flowing through the junction, and o, and 0, are
the conductivities for the two materials.

Layer of positive charge

c,>0, /
+

E, + E,
+

Figure 6.4.1 Charge at a junction.

Solution: In a steady state of current flow, the normal component of the current density
J must be the same on both sides of the junction. Since J = o E', we have 0 E, =0,E,

o,
- (—jE |
o,

Let the charge on the interface boundary be g, , we have, from the Gauss’s law:

or

{PE-dA=(E,~E)a=".
S 80
Thus
EZ—EI:j—;.
0

Substituting the expression for £, from above yields

o, 1 1
qb:£OAE1 O_——l :80A01E1 O_——; .

2 2 1
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The current is [ =JA4 =(0'1E1)A , therefore the amount of charge on the interface
boundary is

6.4.3 Drift Velocity

The resistivity of seawater is about 25 Q-cm. The charge carriers are chiefly Na® and

CI” ions, and of each there are about 3x 10*° /cm’. If we fill a plastic tube 2 meters long
with seawater and connect a 12-volt battery to the electrodes at each end, what is the
resulting average drift velocity of the ions, in cm/s?

Solution:

The current in a conductor of cross sectional area 4 is related to the drift speed v, of the
charge carriers by
I=endv,,

where 7 is the number of charges per unit volume. We can then rewrite the Ohm’s law as

V=IR= (neAvd)(%J =nev pl.

The drift velocity is then

Vv
v, = .
‘" nepl
Substituting the values, we have

12V

vd = 20 -3 -19
(6x107cm™)(1.6 x 107" C)(25 Q- cm)(200 cm)
=2.5x10° My 5510792,
C-Q ]

In converting the units we have used

V(Y1 Ao
Q-C '
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6.4.4 Resistance of a Truncated Cone

Consider a material of resistivity p in a shape of a truncated cone of altitude 4, and radii a
and b, for the right and the left ends, respectively, as shown in the Figure 6.4.2. Assuming
that the current is distributed uniformly throughout the cross-section of the cone, what is
the resistance between the two ends?

T |
| 7 |

b/ Ja
Figure 6.4.2 A truncated Cone. Figure 6.4.3

Solution: Consider a thin disk of radius » at a distance x from the left end. From the
geometry illustrated in Figure 6.4.3, we have

We can solve for the radius of the disk

X
=(a—-b)—+b.
r=(a-b)-

The resistance R is related to resistivity p by R=pl/ A, where [ is the length of the
conductor and A4 is the cross section. The contribution to the resistance from the disk
having a thickness dy is

pdx pdx

mr’ b+ (a—b)x/hl

dR =

Straightforward integration then yields

R h pdx _ ph
O g[b+(a—b)x/h]> mab

3

where we have used

.[ du __ 1
(au+ By} afou+pB)

Note that if b= a, then areais 4= rma’, and set & =1, Eq.(6.2.10) is reproduced.
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6.4.5 Resistance of a Hollow Cylinder

Consider a hollow cylinder of length L and inner radius a and outer radius b, as shown
in Figure 6.4.4. The material has resistivity p.

Figure 6.4.4 A hollow cylinder.

(a) Suppose a potential difference is applied between the ends of the cylinder and
produces a current flowing parallel to the axis. What is the resistance measured?

(b) If instead the potential difference is applied between the inner and outer surfaces so
that current flows radially outward, what is the resistance measured?

Solution:

(a) When a potential difference is applied between the ends of the cylinder, the flow of
charge is parallel to the axis. In this case, the cross-sectional area is 4= (b* —a’), and
the resistance is given by

pL pL

A n-d*)

(b) Consider a differential element, which is made up of a thin cylinder of inner radius r
and outer radius »+dr and length L. Its contribution to the resistance of the system is
given by
ar=P _ pdr
A  2rmrL

where A4 =2nrL is the area normal to the direction of current. The total resistance of the

system becomes
J' pdr _ In é
2nrl 27rL a)
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6.5 Conceptual Questions
1. Two wires A and B of circular cross-section are made of the same metal and have
equal lengths, but the resistance of wire A is four times greater than that of wire B.

Find the ratio of their cross-sectional areas.

2. From the point of view of atomic theory, explain why the resistance of a material
increases as its temperature increases.

6.6 Additional Problems

6.6.1 Current and Current Density

A sphere of radius 10 mm that carries a charge of 8 nC=8x107°C is whirled in a circle
at the end of an insulated string. The angular frequency is 1007 s™ .

(a) What is the basic definition of current in terms of charge?
(b) What average current does this rotating charge represent?
(c) What is the average current density over the area traversed by the sphere?

6.6.2 Resistance of a Cone

o Ja

Figure 6.6.1

A copper resistor of resistivity p is in the shape of a cylinder of radius b and length L,

appended to a truncated right circular cone of length L, and end radii b and a as shown in
Figure 6.6.1.

(a) What is the resistance of the cylindrical portion of the resistor?
(b) What is the resistance of the entire resistor? (Hint: For the tapered portion, it is
necessary to write down the incremental resistance dR of a small slice, dx, of the resistor

at an arbitrary position, x, and then to sum the slices by integration. If the taper is small,
one may assume that the current density is uniform across any cross section.)
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(c) Show that your answer reduces to the expected expression if a = b.
@If L, =100 mm, L, =50 mm , ¢ =0.5mm , and b=1.0 mm , what is the resistance?

6.6.3 Current Density and Drift Speed

(a) A group of charges, each with charge ¢, moves with velocity V. The number of
particles per unit volume is n. What is the current density J of these charges, in
magnitude and direction? Make sure that your answer has units of A-m~.

(b) We want to calculate how long it takes an electron to get from a car battery to the
starter motor after the ignition switch is turned. Assume that the current flowing is
115 A, and that the electrons travel through copper wire with cross-sectional area

31.2 mm* and length 85.5 cm. What is the current density in the wire? The number

density of the conduction electrons in copper is 8.49x10*® /m’. Given this number
density and the current density, what is the drift speed of the electrons? How long does it
take for an electron starting at the battery to reach the starter motor? [Ans.:

3.69x10° A/m*, 2.71x10™* m/s, 52.5 min.]
6.6.4 Current Sheet

A current sheet, as the name implies, is a plane containing currents flowing in one
direction in that plane. One way to construct a sheet of current is by running many
parallel wires in a plane, say the yz-plane, as shown in Figure 6.6.2(a). Each of these
wires carries current / out of the page, in the —j direction, with » wires per unit length in

the z-direction, as shown in Figure 6.6.2(a). Then the current per unit length in the z
direction is n/ . We will use the symbol K to signify current per unit length, so that

K = nl here.
|,

sheet of charge
moving out of page

X

(@ <
\f

(a) (b)
Figure 6.6.2 A current sheet.

Another way to construct a current sheet is to take a non-conducting sheet of charge with
fixed charge per unit area o and move it with some speed in the direction you want
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current to flow. For example, in Figure 6.6.2(b), we have a sheet of charge moving out of
the page with speed v. The direction of current flow is out of the page.

(a) Show that the magnitude of the current per unit length in the z direction, K , is given
by ov. Check that this quantity has the proper dimensions of current per length. This is

in fact a vector relation, K(t) = oV(z), since the sense of the current flow is in the same
direction as the velocity of the positive charges.

(b) A belt transferring charge to the high-potential inner shell of a Van de Graaff
accelerator at the rate of 2.83 mC/s. If the width of the belt carrying the charge is
50 cm and the belt travels at a speed of 30 m/s, what is the surface charge density on the

belt? [Ans.: 189 uC/m?2]
6.6.5 Resistance and Resistivity

A wire with a resistance of 6.0 Q is drawn out through a die so that its new length is three
times its original length. Find the resistance of the longer wire, assuming that the
resistivity and density of the material are not changed during the drawing process. [Ans.:
54 Q].

6.6.6 Charge Accumulation at the Interface

Figure 6.6.3 shows a three-layer sandwich made of two resistive materials with
resistivities p, and p,. From left to right, we have a layer of material with resistivity p,

of width d /3, followed by a layer of material with resistivity p,, also of width d/3,
followed by another layer of the first material with resistivity p,, again of width d /3.

&3 . a3 . 43

+V Volts p, P2 ,0| 0 Volts

a b c d
Figure 6.6.3 Charge accumulation at interface.

The cross-sectional area of all of these materials is 4. The resistive sandwich is bounded
on either side by metallic conductors (black regions). Using a battery (not shown), we
maintain a potential difference V' across the entire sandwich, between the metallic
conductors. The left side of the sandwich is at the higher potential (i.e., the electric fields
point from left to right).
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There are four interfaces between the various materials and the conductors, which we
label a through d, as indicated on the sketch. A steady current / is directed in the
sandwich from left to right, corresponding to a current density J =1/ 4.

(a) What are the electric fields El and E2 in the two different dielectric materials? To

obtain these fields, assume that the current density is the same in every layer. Why must
this be true? [Ans.. All fields point to the right, £ =p 1/ A4, E, =p,I/ A; the current

densities must be the same in a steady state, otherwise there would be a continuous
buildup of charge at the interfaces to unlimited values.]

(b) What is the total resistance R of this sandwich? Show that your expression reduces to
the expected result if p=p,=p. [Ans.: R= a?(zpl + pz)/3A ; if p=p,=p,then
R=dp/ A4, as expected.]

(c) As we move from right to left, what are the changes in potential across the three
layers, in terms of V and the resistivities? [Ans.: Vip, /(2p,+p,), Vp,/(2p,+p,),

Vp /(2p, +p,), summing to a total potential drop of V, as required].

(d) What are the charges per unit area, o, through o, at the interfaces? Use Gauss's
Law and assume that the electric field in the conducting caps is zero.
[Ans.: 0, =-0,=3¢Vp, /aI(Zp1 +p2), 0,=-0, = 330V(p2 —pl)/d(2p] +p2) ]

=

(e) Consider the limit p, >> p . What do your answers above reduce to in this limit?
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