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Capacitance and Dielectrics

5.1 Introduction

A capacitor is a device that stores electric charge. Capacitors vary in shape and size, but
the basic configuration is two conductors carrying equal but opposite charges (Figure
5.1.1). Capacitors have many important applications in electronics. Some examples
include storing electric potential energy, delaying voltage changes when coupled with
resistors, filtering out unwanted frequency signals, forming resonant circuits and making
frequency-dependent and independent voltage dividers when combined with resistors.
Some of these applications will be discussed in latter chapters.

Figure 5.1.1 Basic configuration of a capacitor.

In the uncharged state, the charge on either one of the conductors in the capacitor is zero.
During the charging process, a charge O is moved from one conductor to the other one,
giving one conductor a charge, and the other one a charge —Q. A potential difference
AV is created, with the positively charged conductor at a higher potential than the

negatively charged conductor. Note that whether charged or uncharged, the net charge on
the capacitor as a whole is zero.

The simplest example of a capacitor consists of two conducting plates of area A, which
are parallel to each other, and separated by a distance d, as shown in Figure 5.1.2.

| /+Q

d / 74 -0
- 4

Figure 5.1.2 A parallel-plate capacitor

Experiments show that the amount of charge Q stored in a capacitor is linearly

proportional to AV, the electric potential difference between the plates. Thus, we may
write
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0=C|AV|. (5.1.1)

where C is a positive proportionality constant called capacitance.  Physically,
capacitance is a measure of the capacity of storing electric charge for a given potential
difference AV . The SI unit of capacitance is the farad [F]:

1 F=1 farad = 1 coulomb/volt=1C/V.

A typical capacitance that one finds in a laboratory is in the picofarad (1 pF=10""F) to
millifarad range, (1 mF=10"F=1000uF; 1uF=10"F).

Figure 5.1.3(a) shows the symbol that is used to represent capacitors in circuits. For a
polarized fixed capacitor that has a definite polarity, Figure 5.1.3(b) is sometimes used.

+ s

(a) (b)
Figure 5.1.3 Capacitor symbols.
5.2 Calculation of Capacitance

Let’s see how capacitance can be computed in systems with simple geometry.

Example 5.1: Parallel-Plate Capacitor

Consider two metallic plates of equal area A separated by a distance d, as shown in
Figure 5.2.1 below. The top plate carries a charge +Q while the bottom plate carries a
charge —Q. The charging of the plates can be accomplished by means of a battery, which
produces a potential difference. Find the capacitance of the system.

+Q

+ + + 4+ + + + + + + A+ + o+

Figure 5.2.1 The electric field between the plates of a parallel-plate capacitor

Solution: To find the capacitance C, we first need to know the electric field between the
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plates. A real capacitor is finite in size. Thus, the electric field lines at the edge of the
plates are not straight lines, and the field is not contained entirely between the plates.
This is known as edge effects, and the non-uniform fields near the edge are called the
fringing fields. In Figure 5.2.1, the field lines are drawn incorporating edge effects.
However, in what follows, we shall ignore such effects and assume an idealized situation,
where field lines between the plates are straight lines, and zero outside.

In the limit where the plates are infinitely large, the system has planar symmetry and we
can calculate the electric field everywhere using Gauss’s law given in Eq. (3.2.5):

§pB-an = e
N

&

By choosing a Gaussian “pillbox” with cap area A" to enclose the charge on the positive
plate (see Figure 5.2.2), the electric field in the region between the plates is

A!
oe _04 | p_O (5.2.1)

g, €, g,

EA'=

The same result has also been obtained in Section 3.8.1 using the superposition principle.

Gaussian _
surface A

+Q ’/,_

4+ 4+ 4+ 4+ 49414 4+ 4+ + 414+ 4+ 4+ +

Path of =
intergration

Figure 5.2.2 Gaussian surface for calculating the electric field between the plates.

The potential difference between the plates is
AV=V -V =-[ E-ds=-Fd, (5.2.2)

where we have taken the path of integration to be a straight line from the positive plate to
the negative plate following the field lines (Figure 5.2.2). Because the electric field lines

are always directed from higher potential to lower potential, V <V . However, in

computing the capacitance C, the relevant quantity is the magnitude of the potential
difference:
|AV |= Ed, (5.2.3)
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and its sign is immaterial. From the definition of capacitance, we have

0O g4
C= M = v (parallel plate) . (5.2.4)

Note that C depends only on the geometric factors 4 and d. The capacitance C increases
linearly with the area A4 since for a given potential difference AV, a bigger plate can hold
more charge. On the other hand, C is inversely proportional to d, the distance of
separation because the smaller the value of d, the smaller the potential difference | AV |

for a fixed Q.

Example 5.2: Cylindrical Capacitor

Consider next a solid cylindrical conductor of radius a surrounded by a coaxial
cylindrical shell of inner radius b, as shown in Figure 5.2.3. The length of both cylinders
is L and we take this length to be much larger than b— a, the separation of the cylinders,
so that edge effects can be neglected. The capacitor is charged so that the inner cylinder
has charge +Q while the outer shell has a charge —Q. What is the capacitance?

L - g L

(a) (b)

Figure 5.2.3 (a) A cylindrical capacitor. (b) End view of the capacitor. The electric field
is non-vanishing only in the region a < r < b.

Solution:
To calculate the capacitance, we first compute the electric field everywhere. Due to the

cylindrical symmetry of the system, we choose our Gaussian surface to be a coaxial
cylinder with length ¢ < L and radius » where a <r <b. Using Gauss’s law, we have

CﬁSE~dX=EA:E(27rr£)=% o g (5.2.5)
S

g, 2w r
where A=/ L is the charge per unit length. Notice that the electric field is non-
vanishing only in the region a <7 <b. For r <a, the enclosed charge is g, =0 because

in electrostatic equilibrium any charge in a conductor must reside on its surface. Similarly,
for > b, the enclosed charge is ¢,,, = A¢—Al =0 since the Gaussian surface encloses

equal but opposite charges from both conductors. The potential difference is given by
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AV =V,~V,=—[ E dr=- Aprdr___ A () (5.2.6)
a 2me, 7 r 2me, a

where we have chosen the integration path to be along the direction of the electric field
lines. As expected, the outer conductor with negative charge has a lower potential. The
capacitance is then

Co 0 _ AL _ 2me,L '
|AV| Aln(b/a)/2me, In(b/a)

(5.2.7)

Once again, we see that the capacitance C depends only on the length L, and the radii a
and b.

Example 5.3: Spherical Capacitor

As a third example, let’s consider a spherical capacitor which consists of two concentric
spherical shells of radii @ and b, as shown in Figure 5.2.4. The inner shell has a charge
+Q uniformly distributed over its surface, and the outer shell an equal but opposite
charge —Q. What is the capacitance of this configuration?

Gaussian
surface b

(a) (b)

Figure 5.2.4 (a) spherical capacitor with two concentric spherical shells of radii @ and b.
(b) Gaussian surface for calculating the electric field.

Solution: The electric field is non-vanishing only in the region a <r <b. Using Gauss’s
law, we obtain

)

JPE-dA=E 4= E (4nrty=2 (5.2.8)
N
The radial component of the electric field is then

E-_L 2 (5.2.9)

2
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Therefore, the potential difference between the two conducting shells is:

AV:Vb—Va=—jbErdr=—ijbd—f=—i(l—lj=— Q (b_“ j (5.2.10)
a a p

4re, 4re,\ ab

which yields for the capacitance

C=|A—QV|=4ms0 (b"b . (5.2.11)
—dad

The capacitance C depends only on the radii @ and b.

An “isolated” conductor (with the second conductor placed at infinity) also has a
capacitance. In the limit where b — o, the above equation becomes

lim C =lim 4re, [ﬂ j: lim 47, = dre,a. (5.2.12)
b—a

a
oo b—seo oo a
— —> 1 _a
b

Thus, for a single isolated spherical conductor of radius R, the capacitance is

C=4re R . (5.2.13)

The above expression can also be obtained by noting that a conducting sphere of radius R
with a charge O uniformly distributed over its surface has V' = Q/4ne R, where infinity

is the reference point at zero potential, V' (e0) =0 . Using our definition for capacitance,

-9 92 _irer. (5.2.14)
[AV| Q/4re,R

As expected, the capacitance of an isolated charged sphere only depends on the radius R.

5.3 Storing Energy in a Capacitor

A capacitor can be charged by connecting the plates to the terminals of a battery, which
are maintained at a potential difference AV called the terminal voltage.
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AV

Figure 5.3.1 Charging a capacitor.

The connection results in sharing the charges between the terminals and the plates. For
example, the plate that is connected to the (positive) negative terminal will acquire some
(positive) negative charge. The sharing causes a momentary reduction of charges on the
terminals, and a decrease in the terminal voltage. Chemical reactions are then triggered to
transfer more charge from one terminal to the other to compensate for the loss of charge
to the capacitor plates, and maintain the terminal voltage at its initial level. The battery
could thus be thought of as a charge pump that brings a charge Q from one plate to the

other.

As discussed in the introduction, capacitors can be used to stored electrical energy. The
amount of energy stored is equal to the work done to charge it. During the charging
process, the battery does work to remove charges from one plate and deposit them onto
the other.

+ + + + + + + + + + + + +

=

Figure 5.3.1 Work is done by an external agent in bringing +dg from the negative plate and
depositing the charge on the positive plate.

Let the capacitor be initially uncharged. In each plate of the capacitor, there are many
negative and positive charges, but the number of negative charges balances the number of
positive charges, so that there is no net charge, and therefore no electric field between the
plates. We have a magic bucket and a set of stairs from the bottom plate to the top plate
(Figure 5.3.1). We show a movie of what is essentially this process in Section 5.5.2
below.
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We start out at the bottom plate, fill our magic bucket with a charge +dg, carry the

bucket up the stairs and dump the contents of the bucket on the top plate, charging it up
positive to charge +dg. However, in doing so, the bottom plate is now charged to —dg .

Having emptied the bucket of charge, we now descend the stairs, get another bucketful of
charge +dg, go back up the stairs and dump that charge on the top plate. We then repeat
this process over and over. In this way we build up charge on the capacitor, and create
electric field where there was none initially.

Suppose the amount of charge on the top plate at some instant is +¢, and the potential
difference between the two plates is |AV |=¢g/C. To dump another bucket of charge
+dq on the top plate, the amount of work done to overcome electrical repulsion is
dW = AV | dq . If at the end of the charging process, the charge on the top plate is +Q,
then the total amount of work done in this process is

0 0 :
w=[ dq|avi=] dq%: % (5.3.1)

1
2

This is equal to the electrical potential energy U, of the system:

U,=

10> 1 1
E%:§Q|AV|:5C\AV\2, (532)

5.3.1 Energy Density of the Electric Field

One can think of the energy stored in the capacitor as being stored in the electric field
itself. In the case of a parallel-plate capacitor, with C=¢€,4/d and | AV |= Ed , we have

1
U,==C|AV ['=

1 1
2 2

80A 2 _ 1 2
L= (Bd) = &,E(4d). (5.3.3)

Because the quantity Ad represents the volume between the plates, we can define the
electric energy density as

U, 1 5
= =—¢g,E°| 534
" Volume 2 ° ( )

The energy density u, is proportional to the square of the electric field. Alternatively, one

may obtain the energy stored in the capacitor from the point of view of external work.
Because the plates are oppositely charged, force must be applied to maintain a constant
separation between them. From Eq. (3.4.7), we see that a small patch of charge

Aq = 0(AA) experiences an attractive force AF =0’(AA4)/2¢,. If the total area of the
plate is 4, then an external agent must exert a force F,, =04/ 2¢, to pull the two plates
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apart. Since the electric field strength in the region between the plates is given by
E =0/¢,, the external force can be rewritten as

F. :%OEM. (5.3.5)

€X

The external force F

ext

separate the plates by a distance d is then

is independent of d . The total amount of work done externally to

ext ext

2
W, =[F, ds=F dz[SOEA]d, (5.3.6)
2

consistent with Eq. (5.3.3). Because the potential energy of the system is equal to the
work done by the external agent, we have that the energy density u, =W,/ Ad =¢,E* /2.

In addition, we note that the expression for u, is identical to Eq. (3.4.8) in Chapter 3.

Therefore, the electric energy density u, can also be interpreted as electrostatic pressure
P.

Example 5.4: Electric Energy Density of Dry Air

The breakdown field strength at which dry air loses its insulating ability and allows a
discharge to pass through is £, =3x10°V/m. At this field strength, the electric energy

density is:

1 1
u,=—¢ E* = E(8.85>< 10" C*/N-m*)(3x10° V/m)> =40 J/m’. (5.3.7)

E 2 0

Example 5.5: Energy Stored in a Spherical Shell

Find the energy stored in a metallic spherical shell of radius a and charge Q.

Solution: The electric field associated of a spherical shell of radius a is (Example 3.3)

— 0 ST, r>a
E =1 4rer (5.3.9)
0, r<a
The corresponding energy density is
1 o
U.=—=~¢ = s 539
P2 3omleyt (-39)



outside the sphere, and zero inside. Since the electric field is non-vanishing outside the
spherical shell, we must integrate over the entire region of space from »=a to r =c. In

spherical coordinates, with dV = 4mr’dr , we have

UE:J.:[QQZ—24J47rr2dr— % j =%QV, (5.3.10)

T Eyr 87[8 a

where V =(Q/4nea is the electric potential on the surface of the shell, with V' (e0) =0.

We can readily verify that the energy of the system is equal to the work done in charging
the sphere. To show this, suppose at some instant the sphere has charge ¢ and is at a
potential V' =g /4nea . The work required to add an additional charge dg to the system

is dW =Vdq . Thus, the total work is

W:de:deqzpodq[ q ): o (5.3.11)

dre,a | 8meya

5.4 Dielectrics

In many capacitors there is an insulating material such as paper or plastic between the
plates. Such material, called a dielectric, can be used to maintain a physical separation of
the plates. Since dielectrics break down less readily than air, charge leakage can be
minimized, especially when high voltage is applied.

Experimentally it was found that capacitance C increases when the space between the
conductors is filled with dielectrics. To see how this happens, suppose a capacitor has a
capacitance C, when there is no material between the plates. When a dielectric material

is inserted to completely fill the space between the plates, the capacitance increases to

C=x.C,, (5.4.1)

where K, is called the dielectric constant. In the Table below, we show some dielectric

materials with their dielectric constant. Experiments indicate that all dielectric materials
have k, >1. Note that every dielectric material has a characteristic dielectric strength that

is the maximum value of electric field before breakdown occurs and charges begin to
flow.
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Material K, Dielectric strength (10°V /m)
Air 1.00059 3
Paper 3.7 16
Glass 4-6 9
Water 80 -

The increase of capacitance in the presence of a dielectric can be explained from a
molecular point of view. We shall show that x, is a measure of the dielectric response to

an external electric field. There are two types of dielectrics. The first type are polar
dielectrics, which are dielectrics that have permanent electric dipole moments. An
example of this type of dielectric is water.

X
Q@Q

Figure 5.4.1 Orientations of polar molecules when (a) EO =0 and (b) EO #0.

clelols
~ 808

0008

As depicted in Figure 5.4.1, the orientation of polar molecules is random in the absence
of an external field. When an external electric field Eo is present, a torque is set up that
causes the molecules to align with EO. However, the alignment is not complete due to

random thermal motion. The aligned molecules then generate an electric field that is
opposite to the applied field but smaller in magnitude.

The second type are non-polar dielectrics, which are dielectrics that do not possess a
permanent electric dipole moment. Placing a non-polar dielectric material in an externally
applied electric field can induce electric dipole moments.

-+ -+ -+ —+

E= F:()

Figure 5.4.2 Orientations of non-polar molecules when (a) EO =0 and (b) EO #0.
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Figure 5.4.2 illustrates the orientation of non-polar molecules with and without an
external field EO. When EO #0, (Figure 5.4.2(b)), the induced surface charges on the

faces produces an electric field E , in the direction opposite to E,, leading to

E:EO +EP, with |E|<|E, |. Below we show how the induced electric field E » s
calculated.

5.4.1 Polarization

We have shown that dielectric materials consist of many permanent or induced electric
dipoles. One of the concepts crucial to the understanding of dielectric materials is the
average electric field produced by many little electric dipoles that are all aligned.
Suppose we have a piece of material in the form of a cylinder with area 4 and height 4,
as shown in Figure 5.4.3, and that it consists of N electric dipoles, each with electric
dipole moment p spread uniformly throughout the volume of the cylinder.

AT
"

=

h

|
o1
T

=
=)
=

—
=)
<
=

Figure 5.4.3 A cylinder with uniform dipole distribution.

We furthermore assume for the moment that all of the electric dipole moments p are

aligned with the axis of the cylinder. Since each electric dipole has its own electric field
associated with it, in the absence of any external electric field, if we average over all the
individual fields produced by the dipole, what is the average electric field just due to the
presence of the aligned dipoles?

To answer this question, let us define the polarization vector P to be the net electric
dipole moment vector per unit volume:

i (5.4.2)
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In the case of our cylinder, where all the dipoles are perfectly aligned, the magnitude of
P is equal to
P= Np . (5.4.3)
Ah

The direction of P is parallel to the aligned dipoles.

Now, what is the average electric field these dipoles produce? All the little + charges
associated with the electric dipoles in the interior of the cylinder in Figure 5.4.4(a) are
replaced by two equivalent charges, £(0,, on the top and bottom of the cylinder,

respectively in Figure 5.4.4(b).

+Op

h

J
hO
0
0

(a) (b)
Figure 5.4.4 (a) A cylinder with uniform dipole distribution. (b) Equivalent charge
distribution.

The equivalence can be seen by noting that in the interior of the cylinder, positive charge
at the top of any one of the electric dipoles is canceled on average by the negative charge
of the dipole just above it. The only places where cancellations do not take place are at
the top and bottom of the cylinder, where there are no additional adjacent dipoles. Thus
the interior of the cylinder appears uncharged in an average sense (averaging over many
dipoles). The top surface of the cylinder carries a positive charge and the bottom surface
of the cylinder carries a negative charge.

How do we find an expression for the equivalent charge O, in terms of quantities we
know? The simplest way is to require that the electric dipole moment O, produces,
O,h, is equal to the total electric dipole moment of all the little electric dipoles. This

gives O,h = Np, hence

0,="£. (5.4.4)
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To compute the electric field produced by O, , we note that the equivalent charge

distribution resembles that of a parallel-plate capacitor, with an equivalent surface charge
density o, that is equal to the magnitude of the polarization:

O, Np
==2r_"LT_p, 5.4.5
P T (5.4.5)

The SI units of polarization density, P, are (C-m)/m’, or C/m’, which are the same
units as surface charge density. In general if the polarization vector makes an angle 6
with n, the outward normal vector of the surface, the surface charge density would be

c,=P-fi=Pcosh. (5.4.6)

The equivalent charge system will produce an average electric field of magnitude
E, =P/¢g,. Because the direction of this electric field is opposite to the direction of P,

in vector notation, we have
E,=-P/¢g,. (5.4.7)

The average electric field of all these dipoles is opposite to the direction of the dipoles
themselves. It is important to realize that this is just the average field due to all the
dipoles. If we go close to any individual dipole, we will see a very different field.

We have assumed here that all our electric dipoles are aligned. In general, if these

dipoles are randomly oriented, then the polarization P given in Eq. (5.4.2) will be zero,
and there will be no average field due to their presence. If the dipoles have some

tendency toward a preferred orientation, then P # 0, leading to a non-vanishing average
field E, .

Let us now examine the effects of introducing a dielectric material into a system. We
shall first assume that the atoms or molecules comprising the dielectric material have a
permanent electric dipole moment. If left to themselves, these permanent electric dipoles
in a dielectric material never line up spontaneously, so that in the absence of any applied

external electric field, P =0 due to the random alignment of dipoles, and the average
electric field E, is zero as well. However, when we place the dielectric material in an

external field EO, the dipoles will experience a torque T = p X EO that tends to align the
dipole vectors p with E,. The effect is a net polarization P parallel to E,, and therefore
the dipoles produce an average electric field, E », anti-parallel to EO, i.e., that will tend
to reduce the total electric field strength below ‘EO‘ The electric field E is the sum of

these two fields:

E=E,+E,=E,—P/¢g,. (5.4.8)
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In most cases, the polarization P is not only in the same direction as EO , but also linearly
proportional to E,, and hence to E as well. This is reasonable because without the
external field EO there would be no alignment of dipoles and no polarization P. We

write the linear relation between P and E as
P=¢y.E, (5.4.9)

where y,is called the electric susceptibility. Materials that obey this relation are called
linear dielectrics. Combing Egs. (5.4.8) and (5.4.7) yields

E,=(+y)E=xE, (5.4.10)
where
K, =(1+2%,) (5.4.11)

is the dielectric constant. The dielectric constant x, is always greater than one since
X, >0. This implies that

E=bg (5.4.12)
K

e

Thus, we see that the effect of dielectric materials is always to decrease the electric field
below what it would otherwise be.

In the case of dielectric material where there are no permanent electric dipoles, a similar
effect is observed because the presence of an external field E, induces electric dipole

moments in the atoms or molecules. These induced electric dipoles are parallel to an

again leading to a polarization P parallel to EO, and a reduction of the total electric field
strength.

5.4.2 Dielectrics without Battery

As shown in Figure 5.4.5, a battery with a potential difference | AV, | across its terminals
is first connected to a capacitor C,, which holds a charge O, =C |AV,|. We then

disconnect the battery, leaving O, . The charge O, is called the free charge and when the
battery is disconnected does not change (because it has no conducting path off the plate).
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Figure 5.4.5 Inserting a dielectric material between the capacitor plates while keeping the
charge O, constant

If we then insert a dielectric between the plates (while keeping the free charge constant),
experimentally it is found that the potential difference decreases by a factor of «, :

AV
|AVFL—Q. (5.4.13)
K

e

This implies that the capacitance is changed to

= = _Ke :KeCO'
AV] [AV Ik, 1AV,

Q 9 2l (5.4.14)

The capacitance has increased by a factor of k, . The electric field within the dielectric is

now

E

: (5.4.15)
K

e

d d K d

e

_AV]_[AV|/x, _L(IAVOIJ_Q

In the presence of a dielectric, the electric field decreases by a factor of «, .

5.4.3 Dielectrics with Battery
Consider a second case where a battery supplying a potential difference | AV | remains

connected as the dielectric is inserted (Figure 5.4.6). Experimentally, it is found (first by
Faraday) that the charge on the plates is increased by a factor «,:

0=x0,, (5.4.16)

where (), is the free charge on the plates in the absence of any dielectric.
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x|

-+

- [AV - [AV

Figure 5.4.6 Inserting a dielectric material between the capacitor plates while
maintaining a constant potential difference | AV |.

The capacitance becomes

Q0 _ KO _, o (5.4.17)
AV, AV, ]

increasing because the battery has delivered more free charge to the plates resulting in the
magnitude of the charge on either plate increasing.

In either case, the new value of the capacitance does not depend on whether or not the
battery is connected while the dielectric material is inserted. However, the electric field,
and charge on the plates do depend on whether or not the battery was connected while the
dielectric was inserted.

5.4.4 Gauss’s Law for Dielectrics

Consider again a parallel-plate capacitor shown in Figure 5.4.7:

+0
‘ [ A + + + + +++ + + + + + +]

Gaussian
surface

Figure 5.4.7 Gaussian surface in the absence of a dielectric.

When no dielectric is present, the electric field ﬁo in the region between the plates can be
found by using Gauss’s law:

ffE-ah=Fa=2 = g-2-9
S 80 ASO 80

5-19



With capacitance

. 0 _ 0 _ 4
"lav| Ed  d

(5.4.18)

We have seen that when a dielectric is inserted (Figure 5.4.8), the capacitance increases
by an amount
K K K A€
C =K CO = eQ = eQ = ¢ 0
0 |av] Ed d

(5.4.19)

There is now an induced charge O, of opposite sign on the surface, and the net charge

enclosed by the Gaussian surface is -0, .
+0 \

+¥+ +

Z

O - |
E Gaussian

e
+QP gL A + Ji i iL surface

+ +++ ++ ++ + + + + + +

Figure 5.4.8 Gaussian surface in the presence of a dielectric.

Gauss’s law becomes

JPE-dA=Ea= -9, (5.4.20)
N 8O
The magnitude of the electric field has decreased between the plates
E= 0-0 . (5.4.21)
£,4

However, we have just seen that the effect of the dielectric is to weaken the original field
E, by a factor x,. Therefore,

gt 0 _0°0 (5.4.22)

K, kKegAd g4

from which the induced charge O, can be obtained as
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O =Q(1—LJ. (5.4.23)

K

e

In terms of the surface charge density (divide Eq. (5.4.23)) by the area of the plate, we
have

K

szo[l—ij. (5.4.24)
The limit as k, =1, the induced charge is zero, O, =0, which corresponds to the case of

no dielectric material. Substituting Eq. (5.4.23) into Eq. (5.4.20), Gauss’s law with
dielectric can be rewritten as,

@Ed; — eree,enc — eree,enc , (5425)
N Kego €

where Q.  is the free charge enclosed and €=k, is called the dielectric

permittivity. Alternatively, we may also write

@ l_j ' d& = eree,enc 2 (5426)
S

where D =¢ kE is called the electric displacement vector.

Example 5.6: Capacitance with Dielectrics

A non-conducting slab of thickness ¢, area 4 and dielectric constant k, is inserted into the

space between the plates of a parallel-plate capacitor with spacing d, charge Q and area 4,
as shown in Figure 5.4.9(a). The slab is not necessarily halfway between the capacitor
plates. What is the capacitance of the system?

/A /A
I/ K, ) II Ef(,)) K, t
4 ~ T 4 & ~ T
(a) (b)

Figure 5.4.9 (a) Capacitor with a dielectric. (b) Electric field between the plates.

Solution: To find the capacitance C, we first calculate the potential difference AV . We
have already seen that in the absence of a dielectric, the electric field between the plates
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is given by £, =0/¢€,4, and E, = E,/ k, when a dielectric of dielectric constant x, is

present, as shown in Figure 5.4.9(b). The potential can be found by integrating the
electric field along a straight line from the top to the bottom plates:

0 (d—t)—%t

Aeo E K,

AV == Edl=-AV,~AV,=-E(d—0)-E,t=-
(5.4.27)

where AV, = Et is the potential difference between the two faces of the dielectric. The
capacitance is

0 gd (5.4.28)

C=ar 1
AV d—t[l—]
KE

It is useful to check the following limits:

(i) As t—0, ie, the thickness of the dielectric approaches zero, we have
C=¢g,4/d =C,, which is the expected result for no dielectric.

(i1) As k, =1, we again have C — ¢,4/d = C,, and the situation also correspond to the
case where the dielectric is absent.

(ii1)) In the Ilimit where t—>d, the space is filled with dielectric, we
have C > ke,4/d =x,C,.

5.5 Creating Electric Fields

5.5.1 Creating an Electric Dipole Movie

Electric fields are created by electric charge. If there is no electric charge present, and
never had been any electric charge present in the past, then there would be no electric
field anywhere is space. How is electric field created and how does it come to fill up
space? To answer this, consider the following scenario in which we go from the electric
field being zero everywhere in space to an electric field existing everywhere in space.
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Figure 5.5.1 Creating an electric dipole. (a) Before any charge separation. (b) Just
after the charges are separated. (c) A long time after separation. [ink 1}

Suppose we have a positive point charge sitting right on top of a negative electric charge,
so that the total charge exactly cancels, and there is no electric field anywhere in space.
Now let us pull these two charges apart slightly, so that a small distance separates them.
If we allow them to sit at that distance for a long time, there will now be a charge
imbalance — an electric dipole. The dipole will create an electric field.

Let us see how this creation of electric field takes place in detail. Figure 5.5.1 shows
three frames of a movie of the process of separating the charges. In Figure 5.5.1(a), there
is no charge separation, and the electric field is zero everywhere in space. Figure 5.5.1(b)
shows what happens just after the charges are first separated. An expanding sphere of
electric fields is observed. Figure 5.5.1(c) shows a long time after the charges are
separated (that is, they have been at a constant distance from each other for a long time).
An electric dipole has been created.

What does this sequence tell us? The following conclusions can be drawn:
(1) Electric charge generates electric field — no charge, no field.

(2) The electric field does not appear instantaneously in space everywhere as soon as
there is unbalanced charge — the electric field propagates outward from its source at
some finite speed. This speed will turn out to be the speed of light, as we shall see later.

(3) After the charge distribution settles down and becomes stationary, so does the field
configuration. The initial field pattern associated with the time dependent separation of
the charge is actually a burst of “electric dipole radiation.” We return to the subject of
radiation at the end of this course. Until then, we will neglect radiation fields. The field
configuration left behind after a long time is just the electric dipole pattern discussed
above.

We note that the external agent does work when pulling the charges apart, and then must
apply a force to keep them separate, since they attract each other as soon as they start to
separate. In addition, the work also goes into providing the energy carried off by
radiation, as well as the energy needed to set up the final stationary electric field that we
see in Figure 5.5.1(c).
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link2

Figure 5.5.2 Creating the electric fields of two point charges by pulling apart two
opposite charges initially on top of one another. We artificially terminate the field lines
at a fixed distance from the charges to avoid visual confusion.

Finally, we ignore radiation and complete the process of separating our opposite point
charges that we began in Figure 5.5.1. The link in Figure 5.5.2 shows the complete
sequence. When we finish and have moved the charges far apart, we see the characteristic
radial field in the vicinity of a point charge.

5.5.2 Creating and Destroying Electric Energy Movie

Let us look at the process of creating electric energy in a different context. We ignore
energy losses due to radiation in this discussion. Figure 5.5.3 shows one frame of a
movie that illustrates the following process. This movie is more or less analogous to the
process we discussed in Section 5.3 above for charging a capacitor.

Figure 5.5.3 Creating ([ink 3) and

destroying (http://youtu.be/5G7j0d88NGc ) electric energy.
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We start out with five negative electric charges and five positive charges, all at the same
point in space. Sine there is no net charge, there is no electric field. Now we move one
of the positive charges at constant velocity from its initial position to a distance L away
along the horizontal axis. After doing that, we move the second positive charge in the
same manner to the position where the first positive charge sits. After doing that, we
continue on with the rest of the positive charges in the same manner, until all the positive
charges are sitting a distance L from their initial position along the horizontal axis. Figure
5.5.3 shows the field configuration during this process. We have color coded the “grass
seeds” representation to represent the strength of the electric field. Very strong fields are
white, very weak fields are black, and fields of intermediate strength are yellow.

Over the course of the “create” movie associated with Figure 5.5.3, the strength of the
electric field grows as each positive charge is moved into place. The electric energy
flows out from the path along which the charges move, and is being provided by the
agent moving the charge against the electric field of the other charges. The work that this
agent does to separate the charges against their electric attraction appears as energy in the
electric field. We also have a movie of the opposite process linked to Figure 5.5.3. That
is, we return in sequence each of the five positive charges to their original positions. At
the end of this process we no longer have an electric field, because we no longer have an
unbalanced electric charge.

On the other hand, over the course of the “destroy” movie associated with Figure 5.5.3,
the strength of the electric field decreases as each positive charge is returned to its
original position. The energy flows from the field back to the path along which the
charges move, and is now being provided fo the agent moving the charge at constant
speed along the electric field of the other charges. The energy provided to that agent as
we destroy the electric field is exactly the amount of energy that the agent put into
creating the electric field in the first place, neglecting radiative losses (such losses are
small if we move the charges at speeds small compared to the speed of light). This is a
reversible process if we neglect such losses. That is, the amount of energy the agent puts
into creating the electric field is exactly returned to that agent as the field is destroyed.

There is one final point to be made. Whenever electromagnetic energy is being created,
an electric charge is moving (or being moved) against an electric field (¢v-E<0).
Whenever electromagnetic energy is being destroyed, an electric charge is moving (or
being moved) along an electric field (¢v-E>0). When we return to the creation and
destruction of magnetic energy, we will find this rule holds there as well.

5.6 Summary

* A capacitor is a device that stores electric charge and potential energy. The
capacitance C of a capacitor is the ratio of the charge stored on the capacitor
plates to the potential difference between them:

-9
v
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System Capacitance

Isolated charged sphere of radius R C =4rme,R
: _ A
Parallel-plate capacitor of plate area 4 and plate separation d C=¢g, 7
o . . . , 2me, L
Cylindrical capacitor of length L, inner radius a and outer radius b =
In(b/a)
] _ ab
Spherical capacitor with inner radius a and outer radius b C=dre, m

The work done in charging a capacitor to a charge Q is

2

1

_9 :lQ\AV\z—CyAVyz.
2C 2 2

This is equal to the amount of energy stored in the capacitor.

The electric energy can also be thought of as stored in the electric field E . The
energy density (energy per unit volume) is

1
Uy :EEOEZ'

The energy density u, is equal to the electrostatic pressure on a surface.

When a dielectric material with dielectric constant k, is inserted into a
capacitor, the capacitance increases by a factor x, :
C=x,C,.

e

The polarization vector P is the electric dipole moment per unit volume:
B .
P=—)>p,.
y 2P
The induced electric field due to polarization is

E,= 13/80.

p=—
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* In the presence of a dielectric with dielectric constant x,, the electric field

becomes
BB, +F,—F,/x,

where E, is the electric field without dielectric.

5.7 Appendix: Electric Fields Hold Atoms Together

In this Appendix, we illustrate how electric fields are responsible for holding atoms
together.

“...As our mental eye penetrates into smaller and smaller distances and
shorter and shorter times, we find nature behaving so entirely differently
from what we observe in visible and palpable bodies of our surroundings
that no model shaped after our large-scale experiences can ever be "true".
A completely satisfactory model of this type is not only practically
inaccessible, but not even thinkable. Or, to be precise, we can, of course,
think of it, but however we think it, it is wrong.”

Erwin Schroedinger

5.7.1 Ionic and van der Waals Forces

Electromagnetic forces provide the “glue” that holds atoms together—that is, that keep
electrons near protons and bind atoms together in solids. We present here a brief and
very idealized model of how that happens from a semi-classical point of view.

(a) [k4] (b) [inks]

Figure 5.7.1 (a) A negative charge and (b) a positive charge move past a massive
positive particle at the origin and is deflected from its path by the stresses transmitted by
the electric fields surrounding the charges.

Figure 5.7.1(a) illustrates the examples of the stresses transmitted by fields, as we have
seen before. In Figure 5.7.1(a) we have a negative charge moving past a massive positive
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charge and being deflected toward that charge due to the attraction that the two charges
feel. This attraction is mediated by the stresses transmitted by the electromagnetic field,
and the simple interpretation of the interaction shown in Figure 5.7.1(b) is that the
attraction is primarily due to a tension transmitted by the electric fields surrounding the
charges.

In Figure 5.7.1(b) we have a positive charge moving past a massive positive charge and
being deflected away from that charge due to the repulsion that the two charges feel.
This repulsion is mediated by the stresses transmitted by the electromagnetic field, as we
have discussed above, and the simple interpretation of the interaction shown in Figure
5.7.1(b) is that the repulsion is primarily due to a pressure transmitted by the electric
fields surrounding the charges.

Consider the interaction of four charges of equal mass shown in Figure 5.7.2. Two of the
charges are positively charged and two of the charges are negatively charged, and all
have the same magnitude of charge. The particles interact via the Coulomb force.

We also introduce a quantum-mechanical “Pauli” force, which is always repulsive and
becomes very important at small distances, but is negligible at large distances. The
critical distance at which this repulsive force begins to dominate is about the radius of the
spheres shown in Figure 5.7.2. This Pauli force is quantum mechanical in origin, and
keeps the charges from collapsing into a point (i.e., it keeps a negative particle and a
positive particle from sitting exactly on top of one another).

Additionally, the motion of the particles is damped by a term proportional to their
velocity, allowing them to "settle down" into stable (or meta-stable) states.

link6

Figure 5.7.2 Four charges interacting via the Coulomb force, a repulsive Pauli force at
close distances, with damping.

When these charges are allowed to evolve from the initial state, the first thing that
happens (very quickly) is that the charges pair off into dipoles. This is a rapid process
because the Coulomb attraction between unbalanced charges is very large. This process is
called "ionic binding", and is responsible for the inter-atomic forces in ordinary table salt,
NaCl. After the dipoles form, there is still an interaction between neighboring dipoles, but
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this is a much weaker interaction because the electric field of the dipoles falls off much
faster than that of a single charge. This is because the net charge of the dipole is zero.
When two opposite charges are close to one another, their electric fields “almost” cancel
each other out.

Although in principle the dipole-dipole interaction can be either repulsive or attractive, in
practice there is a torque that rotates the dipoles so that the dipole-dipole force is
attractive. After a long time, this dipole-dipole attraction brings the two dipoles together
in a bound state. The force of attraction between two dipoles is termed a “van der Waals”
force, and it is responsible for intermolecular forces that bind some substances together
into a solid.

5.8 Problem-Solving Strategy: Calculating Capacitance

In this chapter, we have seen how capacitance C can be calculated for various systems.
The procedure is summarized below:

(1) Identify the direction of the electric field using symmetry.
(2) Calculate the electric field everywhere.
(3) Compute the electric potential difference AV.

(4) Calculate the capacitance C using C=Q/| AV |.

In the Table below, we illustrate how the above steps are used to calculate the
capacitance of a parallel-plate capacitor, cylindrical capacitor and a spherical capacitor.
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Capacitors Parallel-plate Cylindrical Spherical
L
/‘Q
. J A = //, a @ i
Figure 3 / % 0 /
T A & I 7_% g
L Gaussian ;
X surface h,
(1) Identify the . i N &
direction of the ' E | +0 /,
electric field 1 NG
using symmetry P X 2 \ »
- 0 o - -
#EdA:EA:— #E,dA:E(Zﬂrl):g @E-dAZE’(47T}”2)=Q
(2) Calculate s 2 5 & s )
electric field P 0O o __A E - 1 0
everywhere = A_SO = 8_0 2me,r ©dme, i’

(3) Compute the

b
AV =V, -V, =~[ E,dr

b
electric AV =V -V, =—[ E-ds '
potential —_Ed ' ___ A ln(bj __ 0 (b-a
difference AV e, a 4me,\ ab
(4) Calc;ulate e A 2me,l ( ab )
C using c= =) C =4rne,
C=0/|AV| d In(b/a) —a
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5.9 Solved Problems

5.9.1 Capacitor Filled with Two Different Dielectrics

Two dielectrics with dielectric constants k; and x, each fill half the space between the

plates of a parallel-plate capacitor as shown in Figure 5.9.1. Each plate has an area 4 and
the plates are separated by a distance d. Compute the capacitance of the system.

Figure 5.9.1 Capacitor filled with two different dielectrics.

Solution: Because the potential difference AV on each half of the capacitor is the same,
we may treat the system as being composed of two capacitors, C, and C,, with charges

*Q, and £Q, on each half. The magnitude of the electric field is the same on each side
because

a7
E=—1
d

We can apply Eq. (5.4.25) to determine the charge on each plate in terms of the electric
field between the plates:
0 =KkgE(A]2).

Therefore using our result for electric field, the charge is given by

KE,(4/2)|AV]
0 = y .

The capacitance of the system is then

0 +0 e A
C==—"—"=2=2=2(x+k,)=C +C,,

B \AV\'_zd
where
cngf%;ﬁa, i=1,2.
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5.9.2 Capacitor with Dielectrics

Consider a conducting spherical shell with an inner radius a and outer radius c. Let the
space between two surfaces be filed with two different dielectric materials so that the
dielectric constant is k, between a and b, and k, between b and ¢, as shown in Figure

5.9.4. Determine the capacitance of this system.

Figure 5.9.4 Spherical capacitor filled with dielectrics.

Solution: The system can be treated as two capacitors connected in series, since the total
potential difference across the capacitors is the sum of potential differences across

individual capacitors, AV = AV, + AV, . Each shell has the same magnitude charge ‘ Q‘ .

The charge on each capacitor is related to the potential difference by

AV = 2
1 Cl
Each individual capacitor, satisfies
C =xC

where C, is the capacitance for a vacuum spherical capacitor of inner radius 7 and outer

radius r,, which we calculated in Example 5.3,

hn
Cl,0 :47r£0 .
’ v, —7r

Therefore the capacitances are

C1 = K'1477,'80 [bab j
—da

C2 = K247l'80 ( bcbj'
c—

The capacitance for the system therefore is
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AV, +AV, Q/C+Q/C, C +C,

Using our results above we have that the capacitance of this system is given by

K, 47reo [ ba—ba j+ K'247L'80 ( cb—cb J

ab bc
b—aj K,4me, [c—bj (b—a)(c—b)

K, 4re ab(c — b) + x,4me be(b— a)

Thus after some simplification we have that

_ 4re K K,abc
K,c(b—a)+xa(c—b)|

It is instructive to check the limit where k;,x, —1. In this case, the above expression

reduces to
4me,abc _4ne,abe  Amejac

T db—a)talc—b) blc—a) (c—a)

which agrees with Eq. (5.2.11) for a spherical capacitor of inner radius a and outer radius
c.

5.9.3 Capacitor Connected to a Spring

Consider an air-filled parallel-plate capacitor with one plate connected to a spring having
a force constant k, and another plate held fixed. The system rests on a table top as shown
in Figure 5.9.5.

k
—WWW\W— ——e

a b

Figure 5.9.5 Capacitor connected to a spring.
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If the charges placed on plates @ and b are +Q and —Q, respectively, how much does the
spring expand?

Solution: The spring force Fs acting on plate a is given by
F =—kxi.
Similarly, the electrostatic force F@ due to the electric field created by plate b is

2
0" ;.
2Ag,

F :QEE:Q[%}:

€

where A4 is the area of the plate. The charges on plate a cannot exert a force on itself, as
required by Newton’s third law. Thus, only the electric field due to plate b is considered.
At equilibrium the two forces cancel and we have

which gives

5.10 Conceptual Questions
1. The charges on the plates of a parallel-plate capacitor are of opposite sign, and they
attract each other. To increase the plate separation, is the external work done positive or

negative? What happens to the external work done in this process?

2. How does the stored energy change if the potential difference across a capacitor is
tripled?

3. Does the presence of a dielectric increase or decrease the maximum operating voltage
of a capacitor? Explain.

4. If a dielectric-filled capacitor is cooled down, what happens to its capacitance?
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5.11 Additional Problems

5.11.1 Capacitors and Dielectrics

(a) A parallel-plate capacitor of area A and spacing d is filled with three dielectrics as
shown in Figure 5.11.1. Each occupies 1/3 of the volume. What is the capacitance of this
system? [Hint: Consider an equivalent system to be three parallel capacitors, and justify
this assumption.] Show that you obtain the proper limits as the dielectric constants

approach unity, Kk, — 1]

d Kl K'z

Figure 5.11.1

(b) This capacitor is now filled as shown in Figure 5.11.2. What is its capacitance? Use
Gauss's law to find the field in each dielectric, and then calculate AV across the entire
capacitor. Again, check your answer as the dielectric constants approach unity, k, — 1.
Could you have assumed that this system is equivalent to three capacitors in series?

" |d

Figure 5.11.2

5.11.2 Gauss’s Law in the Presence of a Dielectric

A solid conducting sphere with a radius R, carries a free charge O and is surrounded by a
concentric dielectric spherical shell with an outer radius R, and a dielectric constant k.

This system is isolated from other conductors and resides in air (x, = 1), as shown in
Figure 5.11.3.

Solid spherical
conductor

Dielectric
shell

Figure 5.11.3
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(a) Determine the displacement vector D everywhere, i.e. its magnitude and direction in
the regions » <R, R, <r<R, and r >R, .

(b) Determine the electric field E everywhere.

5.11.3 Gauss’s Law and Dielectrics

A cylindrical shell of dielectric material has inner radius a and outer radius b, as shown in
Figure 5.11.4.

Figure 5.11.4

The material has a dielectric constant x, =10. At the center of the shell there is a line

charge running parallel to the axis of the cylindrical shell, with free charge per unit length
A.

(a) Find the electric field for: r<a, a<r<b and r>b.

(b) What is the induced surface charge per unit length on the inner surface of the
spherical shell? [Ans. =94/10.]

(c) What is the induced surface charge per unit length on the outer surface of the
spherical shell? [Ans. +94/10 .]

5.11.4 A Capacitor with a Dielectric

A parallel plate capacitor has a capacitance of 112 pF, a plate area of 96.5 cm2, and a
mica dielectric (k, =5.40). Ata 55V potential difference, calculate

(a) the electric field strength in the mica; [Ans. 13.4 kV/m.]
(b) the magnitude of the free charge on the plates; [Ans. 6.16 nC.]
(c) the magnitude of the induced surface charge; [Ans. 5.02 nC.]

(d) the magnitude of the polarization P [Ans. 520 nC/m2.]
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5.11.5 Force on the Plates of a Capacitor

The plates of a parallel-plate capacitor have area 4 and carry total charge +Q (see Figure
5.12.6). We would like to show that these plates attract each other with a force given by

F = 02/(2¢,4).

|
)
-

[
+ + 4+ + + + + + + + + + +

Figure 5.12.6

(a) Calculate the total force on the left plate due to the electric field of the right plate,
using Coulomb's Law. Ignore fringing fields.

(b) If you pull the plates apart, against their attraction, you are doing work and that work
goes directly into creating additional electrostatic energy. Calculate the force necessary

to increase the plate separation from x to x + dx by equating the work you do, F-dX, to
the increase in electrostatic energy, assuming that the electric energy density is £ £ 272,
and that the charge Q remains constant.

(c) Using this expression for the force, show that the force per unit area (the electrostatic
stress) acting on either capacitor plate is given by .s‘OE2 /2. This result is true for a

conductor of any shape with an electric field E at its surface.

(d) Atmospheric pressure is 14.7 1b/in2, or 101,341 N/m2. How large would E have to be
to produce this force per unit area? [Ans. 151 MV/m. Note that Van de Graff
accelerators can reach fields of 100 MV/m maximum before breakdown, so that
electrostatic stresses are on the same order as atmospheric pressures in this extreme
situation, but not much greater].
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5.11.6 Energy Density in a Capacitor with a Dielectric

Consider the case in which a dielectric material with dielectric constant k, completely
fills the space between the plates of a parallel-plate capacitor. Show that the energy
density of the field between the plates is u, = E-D/2 by the following procedure:

(a) Write the expression u, = E-D/2 as a function of E and K, (i.e. eliminate D ).
(b) Given the electric field and potential of such a capacitor with free charge g on it
(problem 4-1a above), calculate the work done to charge up the capacitor from ¢ =0 to

q = Q, the final charge.

(c) Find the energy density u,. .
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