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Electric Potential 
 
 
4.1 Potential and Potential Energy  
 
In the introductory mechanics course, we have seen that force on a particle of mass m 
located at a distance r from Earth’s center due to the gravitational interaction between the 
particle and the Earth obeys an inverse-square law: 
 

 
    


Fg = −G Mm

r 2 r̂ , (4.1.1) 

 
where   G = 6.67 ×10−11 N ⋅m2 /kg2  is the gravitational constant and   ̂r  is a unit vector 
pointing radially outward from the Earth. The Earth is assumed to be a uniform sphere of 
mass M. The corresponding gravitation field   

g , defined as the gravitation force per unit 
mass, is given by 

 
    
g =


Fg

m
= − GM

r 2 r̂ . (4.1.2) 

 
Notice that   

g  is a function of M, the mass that creates the field, and r, the distance from 
the center of the Earth. 

 
 

Figure 4.1.1 
 
Consider moving a particle of mass  m  under the influence of gravity (Figure 4.1.1). The 
work done by gravity in moving  m  from A to B is  
 

 

    

WG =

FG ⋅ d s = −

GMm

r 2

⎛
⎝⎜

⎞
⎠⎟

dr
rA

rB∫∫ =

rA

rB

GMm

r

⎡
⎣⎢

⎤
⎦⎥

= GMm 1
rB

− 1
rA

⎛

⎝⎜
⎞

⎠⎟
. (4.1.3) 
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The result shows that  WG  is independent of the path taken; it depends only on the 
endpoints A and B.  
 
Near Earth’s surface, the gravitational field   

g  is approximately constant, with a 
magnitude   g = GM / rE

2 ≈ 9.8m/s2 , where  rE  is the radius of Earth. The work done by 
gravity in moving an object from height  yA  to  yB  (Figure 4.1.2) is 
 

 
    
Wg =


Fg ⋅ d

s∫ = − mg dy
yA

yB∫ = −mg( yB − yA ) . (4.1.4) 

 
 

Figure 4.1.2 Moving an object from A to B. 
 
The result again is independent of the path, and is only a function of the change in 
vertical height  yB − yA . 
   
In the examples above, if the object returns to its starting point, then the work done by the 
gravitation force on the object is zero along this closed path. Any force that satisfies this 
property for all closed paths is called a conservative force: 
 
 

    


F ⋅ d

s

all closed paths
∫ = 0        (conservative force). (4.1.5) 

 
When dealing with a conservative force, it is often convenient to introduce the concept of 
change in potential energy function,  ΔU =U B −U A  between any two points in space, A 
and B,  

 
   
ΔU =U B −U A = −


F ⋅ d s

A

B

∫ = −W  (4.1.6) 

 
where  W  is the work done by the force on the object.  In the case of gravity,  

W =Wg and 
from Eq. ((4.1.3)), the change in potential energy can be written as 
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UG (rB ) −UG (rA ) = −GMm 1

rB

− 1
rA

⎛

⎝⎜
⎞

⎠⎟
 (4.1.7) 

 
It is often convenient to choose a reference point  P  where   UG (rP )  is equal to zero. In the 
gravitational case, we choose infinity to be the reference point, with   UG (rP = ∞) = 0 . 
Therefore the change in potential energy when two objects start off an infinite distance 
apart and end up a distance  r  apart is given by  
 

 
  
UG (r) −UG (∞) = −GMm 1

r
− 1
∞

⎛
⎝⎜

⎞
⎠⎟
= − GMm

r
. (4.1.8) 

 
Thus we can define a potential energy function  
 

 
  
UG (r) = − GMm

r
, U (∞) = 0.  (4.1.9) 

 
When one object is much more massive for example the Earth and a satellite, then the 
scalar quantity   UG (r) , with units of energy, corresponds to the negative of the work done 
by the gravitation force on the satellite as it moves from an infinite distance away to a 
distance  r  from the center of the Earth. The value of   UG (r)  depends on the choice that 

  UG (rP = ∞) = 0 . However, the potential energy difference   UG (rB ) −UG (rA )  between two 
points is independent of the choice of reference point and by definition corresponds to a 
physical quantity, the negative of the work done.  
 
Near Earth’s surface, where the gravitation field   

g  is approximately constant, as an 
object moves from the ground to a height h above the ground, the change in potential 
energy is  

ΔUg = +mgh , and the work done by gravity is  
Wg = −mgh . 

 
Let’s again consider a gravitation field   

g . Let’s define the change in potential energy per 
mass between points A and B by 
 

 
  
ΔVG ≡VG (rB ) −VG (rA ) =

UG (rB ) −UG (rA )
m

≡
ΔUG

m
 (4.1.10) 

 
According to our definition,  
 

 
    
ΔVG = − (


FG / m) ⋅ d s

A

B

∫ = − g ⋅ d s
A

B

∫  (4.1.11) 
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 ΔVG  is called the gravitation potential difference. The terminology is unfortunate 
because it is very easy to mix-up ‘potential difference’ with ‘potential energy difference’. 
From Eq. (4.1.7), the gravitation potential difference between the points A and B is 
 

 
    
ΔVG = − (


FG / m) ⋅ d s

A

B

∫ = − g ⋅ d s
A

B

∫  (4.1.12) 

 
Just like the gravitation field, the gravitation potential difference depends only on the M, 
the mass that creates the field, and r, the distance from the center of the Earth. Physically 

 ΔVG  represents the negative of the work done per unit mass by gravity to move a particle 
from points A to B.  
 
Our treatment of electrostatics will be similar to gravitation because the electrostatic 
force    F


e  also obeys an inverse-square law. In addition, it is also conservative. In the 

presence of an electric field   E


, in analogy to the gravitational field   
g , we define the 

electric potential difference between two points   A and B  as 
 

 
    
ΔVe = − (


Fe / qt ) ⋅ d

s
A

B

∫ = −

E ⋅ d s

A

B

∫ , (4.1.13) 

 
where  qt  is a test charge. The potential difference  ΔVe , which we will now denote just 
by  ΔV , represents the negative of the work done per unit charge by the electrostatic force 
when a test charge  qt  moves from points A to B. Again, electric potential difference 
should not be confused with electric potential energy. The two quantities are related as 
follows. Suppose an object with charge  q  is moved across a potential difference  ΔV , 
then the change in the potential energy of the object is 
 
  ΔU = qΔV . (4.1.14) 
 
The SI unit of electric potential is volt  [V]  
  
  1volt = 1 joule/coulomb  (1 V= 1 J/C) . (4.1.15) 
 
When dealing with systems at the atomic or molecular scale, a joule  [J]often turns out to 
be too large as an energy unit. A more useful scale is electron volt  [eV] , which is defined 
as the energy an electron acquires (or loses) when moving through a potential difference 
of one volt: 
  1eV = (1.6 ×10−19C)(1V) = 1.6 ×10−19 J . (4.1.16) 
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4.2 Electric Potential in a Uniform Field 
 
Consider a charge  +q  moving in the direction of a uniform electric field     E


= E(− ĵ) , as 

shown in Figure 4.2.1(a). 
 

   (a)     (b) 
 
Figure 4.2.1 (a) A charge q moving in the direction of a constant electric field   E


. (b) A 

mass m moving in the direction of a constant gravitation field   
g . 

 
Because the path taken is parallel to   E


, the electric potential difference between points A 

and B is given by 

 
    
ΔV =VB −VA = − E


⋅ d s

A

B

∫ = −E ds
A

B

∫ = −Ed < 0 . (4.2.1) 

 
Therefore point B is at a lower potential compared to point A. In fact, electric field lines 
always point from higher potential to lower. The change in potential energy is 

 ΔU =U B −U A = −qEd . Because   q > 0,  for this motion   ΔU < 0 , the potential energy of 
a positive charge decreases as it moves along the direction of the electric field. The 
corresponding gravity analogy, depicted in Figure 4.2.1(b), is that a mass m loses 
potential energy ( ΔU = −mgd ) as it moves in the direction of the gravitation field   

g .  
 

 
 

Figure 4.2.2 Potential difference in a uniform electric field 
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What happens if the path from A to B is not parallel to   E


, but instead at an angle θ, as 
shown in Figure 4.2.2? In that case, the potential difference becomes 
 

 
    
ΔV =VB −VA = − E


⋅ d s

A

B

∫ = −E

⋅ s = −Escosθ = −Ey . (4.2.2) 

 
Note that y increases downward in Figure 4.2.2. Here we see once more that moving 
along the direction of the electric field   E


 leads to a lower electric potential. What would 

the change in potential be if the path were  A→ C → B ? In this case, the potential 
difference consists of two contributions, one for each segment of the path: 
 
  ΔV = ΔVCA + ΔVBC . (4.2.3) 
 
When moving from A to C, the change in potential is  ΔVCA = −Ey . When moving from C 

to B,   ΔVBC = 0  because the path is perpendicular to the direction of   E


.  Thus, the same 

result is obtained irrespective of the path taken, consistent with the fact that   E


 is a 
conservative vector field.  
 
For the path  A→ C → B , work is done by the field only along the segment AC that is 
parallel to the field lines. Points B and C are at the same electric potential, i.e.,  VB =VC . 
Because  ΔU = qΔV , this means that no work is required when moving the charge from 
B to C. In fact, all points along the straight line connecting B and C are on the same 
“equipotential line.”  A more complete discussion of equipotential will be given in 
Section 4.5. 
 
4.3 Electric Potential due to Point Charges 
 
Next, let’s compute the potential difference between two points A and B due to a charge 
+Q. The electric field produced by Q is     E


= (Q / 4πε0r

2 )r̂ , where   ̂r  is a unit vector 
pointing radially away from the location of the charge.   
 

 
 

Figure 4.3.1 Potential difference between two points due to a point charge Q. 
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From Figure 4.3.1, we see that     ̂r ⋅ d
s = dscosθ = dr , which gives 

 

 
    
ΔV =VB −VA = − Q

4πε0r
2A

B

∫ r̂ ⋅ d s = − Q
4πε0r

2A

B

∫ dr = Q
4πε0

1
rB

− 1
rA

⎛

⎝⎜
⎞

⎠⎟
. (4.3.1) 

 
Once again, the potential difference  ΔV  depends only on the endpoints, independent of 
the choice of path taken. As in the case of gravity, only the difference in electrical 
potential is physically meaningful, and one may choose a reference point and set the 
potential there to be zero. In practice, it is often convenient to choose the reference point 
to be at infinity, so that the electric potential at a point P becomes 
 

 
    
VP = − E


⋅ d s

∞

P

∫ , V (∞) = 0 . (4.3.2) 

 
With this choice of zero potential, we introduce an electric potential function,   V (r) , 
where r is the distance from the point-like charged object with charge Q: 
 

 
  
V (r) = 1

4πε0

Q
r

. (4.3.3) 

 
When more than one point charge is present, by applying the superposition principle, the 
electric potential is the sum of potentials due to individual charges: 

 

  
V (r) = 1

4πε0

qi

rii
∑ = ke

qi

rii
∑                            (4.3.4) 

 
A summary of comparison between gravitation and electrostatics is tabulated below: 
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Gravity Electrostatics 

Mass m Charge q 

Gravitation force 
    


FG = −G Mm

r 2 r̂  Electric force 
    


Fe = ke

Qq
r 2 r̂  

Gravitation field 
    
g =

Fg / m  Electric field     


E =

Fe / q  

Potential energy change 
   
ΔU = −


FG ⋅ d s

A

B

∫  
Potential energy change 

   
ΔU = −


Fe ⋅ d

s
A

B

∫  

Gravitational potential 
   
ΔVG = − g ⋅ d s

A

B

∫  Electric Potential 
   
ΔV = −


E ⋅ d s

A

B

∫  

Potential function,   VG (∞) = 0 : 
 
VG = − GM

r
 Potential function,   V (∞) = 0 : 

 
V = ke

Q
r

 

  
| ΔUg |= mgd ,  (constant   

g )   | ΔU |= qEd ,  (constant   E


) 

 
4.3.1 Potential Energy in a System of Charges 
 
Suppose you lift a mass m through a height h.  The work done by the external agent (you), 
is positive,   Wext = mgh > 0 . The work done by the gravitation field is negative, 

  
Wg = −mgh = −Wext . The change in the potential energy is therefore equal to the work 

that you do in lifting the mass, 
  
ΔUg = −Wg = +Wext = mgh .  

 
If an electrostatic system of charges is assembled by an external agent, then 

  ΔU = −W = +Wext . That is, the change in potential energy of the system is the work that 
must be put in by an external agent to assemble the configuration. The charges are 
brought in from infinity and are at rest at the end of the process. Let’s start with just two 
charges   q1  and   q2  that are infinitely far apart with potential energy   U = 0 . Let the 
potential due to   q1  at a point  P  be   V1  (Figure 4.3.2).  

 

 
 

Figure 4.3.2 Two point charges separated by a distance   r12 . 
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The work   W2  done by an external agent in bringing the second charge   q2  from infinity to 

 P  is then   W2 = q2V1 . Because   V1 = q1 / 4πε0r12 ,  where   r12  is the distance measured from 

  q1  to P, we have that 

 
  
U12 =W2 = q2V1 =

1
4πε0

q1q2

r12

. (4.3.5) 

 
If   q1  and   q2  have the same sign, positive work must be done to overcome the 
electrostatic repulsion and the change in the potential energy of the system is positive, 

  U12 > 0 . On the other hand, if the signs are opposite, then   U12 < 0  due to the attractive 
force between the charges. To add a third charge   q3  to the system (Figure 4.3.3), the 
work required is  

 
  
W3 = q3 V1 +V2( ) = q3

4πε0

q1

r13

+
q2

r23

⎛

⎝⎜
⎞

⎠⎟
. (4.3.6) 

 

 
 

Figure 4.3.3 A system of three point charges. 
 
The potential energy of this configuration is then 
 

 
  
U =W2 +W3 =

1
4πε0

q1q2

r12

+
q1q3

r13

+
q2q3

r23

⎛

⎝⎜
⎞

⎠⎟
=U12 +U13 +U23 . (4.3.7) 

 
The equation shows that the total potential energy is simply the sum of the contributions 
from distinct pairs. Generalizing to a system of N charges, we have 
 

 

  

U = 1
4πε0

qiq j

rijj=1
j>i

N

∑
i=1

N

∑ , (4.3.8) 

   
where the constraint  j > i  is placed to avoid double counting each pair. Alternatively, 
one may count each pair twice and divide the result by 2. This leads to 
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U = 1
8πε0

qiq j

rijj=1
j≠ i

N

∑
i=1

N

∑ = 1
2

qi
i=1

N

∑ 1
4πε0

qj

rijj=1
j≠ i

N

∑
⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟ =

1
2

qiV (ri )
i=1

N

∑ . (4.3.9) 

 
where   V (ri ) , the quantity in the parenthesis is the potential at    

ri  (location of  qi ) due to 
all the other charges.   
 
 
4.4 Deriving Electric Field from the Electric Potential  
 
In Eq. (4.3.2) we established the relation between   E


 and V. If we consider two points that 

are separated by a small distance    d
s , the following differential form is obtained: 

  
    dV = −E


⋅ ds . (4.4.1) 

 
In Cartesian coordinates, 

    
E

= Ex î + Ey ĵ+ Ezk̂ and     d

s = dx î + dy ĵ+ dzk̂,  and therefore  
 
 

   
dV = (Ex î + Ey ĵ+ Ezk̂⋅)(dx î + dy ĵ+ dzk̂) = Exdx + Eydy + Ezdz . (4.4.2) 

 
We define directional derivatives   ∂V / ∂x ,   ∂V / ∂y , and   ∂V / ∂z  such that  
 

 
 
dV = ∂V

∂x
dx + ∂V

∂y
dy + ∂V

∂z
dz . (4.4.3) 

Therefore 

 
  
Ex = − ∂V

∂x
, Ey = − ∂V

∂y
, Ez = − ∂V

∂z
. (4.4.4)  

 
By introducing a differential quantity called the del (gradient) operator 
  

 
   
∇ ≡ ∂

∂x
î + ∂

∂y
ĵ + ∂

∂z
k̂  (4.4.5) 

the electric field can be written as  
 

 
    
E

= Ex î + Ey ĵ+ Ezk̂ = − ∂V

∂x
î + ∂V

∂y
ĵ + ∂V

∂z
k̂

⎛
⎝⎜

⎞
⎠⎟
= −∇V .  (4.4.6) 

 
The differential operator, ∇ , operates on a scalar quantity (electric potential) and results 
in a vector quantity (electric field). Mathematically, we can think of   E


 as the negative of 

the gradient of the electric potential  V . Physically, the negative sign implies that if  V  
increases as a positive charge moves along some direction, say x, with   ∂V / ∂x > 0 , then 
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there is a non-vanishing component of   E


 in the opposite direction   Ex = −∂V / ∂x < 0 . In 
the case of gravity, if the gravitational potential increases when a mass is lifted a distance 
h, the gravitational force must be downward. 
 
If the charge distribution possesses spherical symmetry, then the resulting electric field is 
a function of the radial distance r, i.e.,     


E = Err̂ . In this case,   dV = −Er dr.  If   V (r)  is 

known, then   

E  may be obtained as 

 

 
    
E

= Err̂ = − dV

dr
⎛
⎝⎜

⎞
⎠⎟

r̂  (4.4.7) 

 
For example, the electric potential due to a point charge q is   V (r) = q / 4πε0r . Using the 

above formula, the electric field is simply     E

= (q / 4πε0r

2 )r̂ .  
 
 
Example 4.4.1: Calculating Electric Field from Electric Potential 
 
Suppose the electric potential due to a certain charge distribution can be written in 
Cartesian Coordinates as 
   V (x, y, z) = Ax2 y2 + Bxyz  
 
where A ,  B  and  C  are constants. What is the associated electric field? 
 
Solution: The electric field can be found by using Eq. (4.4.4) 
 

 

  

Ex = − ∂V
∂x

= −2Axy2 − Byz

Ey = − ∂V
∂y

= −2Ax2 y − Bxz

Ez = − ∂V
∂z

= −Bxy

 

 
Therefore, the electric field is     


E = (−2Axy2 − Byz) î − (2Ax2 y + Bxz) ĵ− Bxy k̂ .  

 
 
4.5 Gradients and Equipotentials 
 
Suppose a system in two dimensions has an electric potential   V (x, y) . The curves 
characterized by constant   V (x, y)  are called equipotential curves. Examples of 
equipotential curves are depicted in Figure 4.5.1 below. 
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Figure 4.5.1 Equipotential curves 
 
In three dimensions, surfaces such that   V (x, y, z) = constant  are called equipotential 

surfaces. Because     

E = −∇V ,  we can show that the direction of   E


 at a point is always 

perpendicular to the equipotential through that point. We shall show this in two 
dimensions. Generalization to three dimensions is straightforward. 
 
Referring to Figure 4.5.2, let the potential at a point   P(x, y)  be   V (x, y) . What is the 
potential difference  dV  between   P(x, y)  and a neighboring point   P(x + dx, y + dy) ? 
Write the difference as 
 

 

   

dV =V (x + dx, y + dy) −V (x, y)

= V (x, y) + ∂V
∂x

dx + ∂V
∂y

dy +
⎡

⎣
⎢

⎤

⎦
⎥ −V (x, y) ≈ ∂V

∂x
dx + ∂V

∂y
dy

. (4.5.1) 

 

 
 

 
Figure 4.5.2 Change in V when moving from one equipotential curve to another 

 
The displacement vector connecting the points is given by     d

s = dx î + dy ĵ . We can 
rewrite  dV as  

 
    
dV = ∂V

∂x
î + ∂V

∂y
ĵ

⎛
⎝⎜

⎞
⎠⎟
⋅ dx î + dy ĵ( ) = (∇V ) ⋅ ds = −E


⋅ ds . (4.5.2) 
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If the displacement    d
s  is along the tangent to the equipotential curve that passes through 

the point  P  with coordinates   (x, y) , then   dV = 0  because V is constant everywhere on 

that curve. This implies that    E

⊥ ds  along the equipotential curve. That is,   E


 is 

perpendicular to the equipotential. In Figure 4.5.3 we illustrate some examples of 
equipotential curves. In three dimensions they become equipotential surfaces. From Eq. 
(4.5.8), we also see that the change in potential  dV attains a maximum when the gradient 
 ∇V is parallel to    d

s : 
 

 
  
max

dV
ds

⎛
⎝⎜

⎞
⎠⎟
= ∇V . (4.5.3) 

 
Physically, this means that  ∇V always points in the direction of maximum rate of change 
of V with respect to the displacement    d

s .   
 

   
 
Figure 4.5.3 Equipotential curves and electric field lines for (a) a constant   E


 field, (b) a 

point charge, and (c) an electric dipole.  
 

The properties of equipotential surfaces can be summarized as follows: 
 
(i) The electric field lines are perpendicular to the equipotentials and point from 

higher to lower potentials. 
 
(ii) By symmetry, the equipotential surfaces produced by a point charge form a 

family of concentric spheres, and for constant electric field, a family of planes 
perpendicular to the field lines. 

 
(iii) The tangential component of the electric field along the equipotential surface is 

zero, otherwise non-vanishing work would be done to move a charge from one 
point on the surface to the other. 

 
(iv) No work is required to move a particle along an equipotential surface. 

 
A useful analogy for equipotential curves is a topographic map (Figure 4.5.4). Each 
contour line on the map represents a fixed elevation above sea level. Mathematically it is 
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expressed as   z = f (x, y) = constant . Since the gravitational potential near the surface of 
Earth is  

Vg = gz , these curves correspond to gravitational equipotentials. 
 

  
 

Figure 4.5.4 A topographic map 
 
 
 
 
4.5.1: Conductors and Equipotentials 
 
We already studies the basic properties of a conductor in Chapter 3 which we now 
summarized: 
 
(1) the electric field inside a conductor is zero;  
 
(2) any net charge must reside on the surface of the conductor;  
 
(3) the tangential component of the electric field on the surface is zero;  
 
(4) just outside the conductor, the electric field is normal to the surface; 
 
(5) the discontinuity in the normal component of the electric field across the surface of a 
conductor is proportional to the surface charge density  
 
Because the tangential component of the electric field on the surface of a conductor 
vanishes, this implies that the surface of a conductor in electrostatic equilibrium is an 
equipotential surface. To verify this claim, consider two points A and B on the surface of 
a conductor. Since the tangential component   Et = 0,  the potential difference is 
 

 
    
VB −VA = − E


⋅ ds

A

B

∫ = 0  
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because   

E  is perpendicular to    d

s .  Thus, points A and B are at the same potential with 

  VA =VB .  
 
4.6 Continuous Symmetric Charge Distributions 
 
We shall now calculate the electric potential difference between two points in space 
associated with a continuous symmetric distribution of charge in which we can first use 
Gauss’s Law to determine the electric field everywhere is space. 
 
Example 4.61: Electric Potential Due to a Spherical Shell 

 
Consider a metallic spherical shell of radius a and charge Q, as shown in Figure 4.6.1.  
 

 
 

Figure 4.6.1 A spherical shell of radius a and charge Q. 
 
(a) Find the electric potential everywhere. 
 
(b) Calculate the potential energy of the system. 
 
Solution: 
 
(a) In Example 3.3, we showed that the electric field for a spherical shell of is given by 
 

 

    


E =

Q
4πε0r

2 r̂, r > a

0, r < a.

⎧

⎨
⎪

⎩
⎪

 

 
The electric potential may be calculated by using Eq. (4.1.13), 
 

   
VB −VA = − E


⋅ ds

A

B

∫ . 

For r > a, we have  
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V (r) −V (∞) = − Q

4πε0 ′r 2∞

r

∫ d ′r = 1
4πε0

Q
r
= ke

Q
r

, (4.6.1) 

 
where we have chosen   V (∞) = 0  as our reference point. On the other hand, for r < a, the 
potential becomes 

 

  

V (r) −V (∞) = − Edr
∞

a

∫ − 0dr
a

r

∫
= − Q

4πε0r
2 dr

∞

a

∫ = 1
4πε0

Q
a
= ke

Q
a

.
 (4.6.2) 

 
A plot of the electric potential is shown in Figure 4.6.2. Note that the potential  V  is 
constant inside a conductor. 

 
 
Figure 4.6.2 Electric potential as a function of r for a spherical conducting shell 

 
(b) The potential energy U can be thought of as the work that needs to be done to build 
up the system. To charge up the sphere, an external agent must bring charge from infinity 
and deposit it onto the surface of the sphere. 
 
Suppose the charge accumulated on the sphere at some instant is q. The potential at the 
surface of the sphere is then   V = q / 4πε0a . The amount of work that must be done by an 
external agent to bring charge  dq  from infinity and deposit it on the sphere is 
 

 
  
dWext =Vdq = q

4πε0a
⎛

⎝⎜
⎞

⎠⎟
dq . (4.6.3) 

 
Therefore, the total amount of work needed to charge the sphere to Q is 
 

 
  
Wext = dq

0

Q

∫
q

4πε0a
= Q2

8πε0a
. (4.6.4) 

 
Because   V = Q / 4πε0a  and   Wex t = U , the above expression simplified to  
 
   U = (1 / 2)QV . (4.6.5) 
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The result can be contrasted with the case of a point charge. The work required to bring a 
point charge Q from infinity to a point where the electric potential due to other charges is 
 V  is   Wex t = QV . Therefore, for a point charge Q, the potential energy is  U = QV .  
 
 
Example 4.6.2 Conducting Spheres Connected by a Wire 

 
Why does lightning strike the tip of a lightning rod? Let’s try to answer that question. 
Suppose two metal spheres with radii   r1  and   r2  are connected by a thin conducting wire, 
as shown in Figure 4.6.3. 
 

 
 

Figure 4.6.2 Two conducting spheres connected by a wire. 
 
Charge will continue to flow until equilibrium is established such that both spheres are at 
the same potential   V1 =V2 =V .  Suppose the charges on the spheres at equilibrium are   q1  
and   q2 . Neglecting the effect of the wire that connects the two spheres, the equipotential 
condition implies 

 
  
V = 1

4πε0

q1

r1

= 1
4πε0

q2

r2

. 

Therefore 

 
  

q1

r1

=
q2

r2

, (4.6.6) 

 
provided that the two spheres are very far apart so that the charge distributions on the 
surfaces of the conductors are uniform. The electric fields can be expressed as 
 

 
  
E1 =

1
4πε0

q1

r1
2 =

σ1

ε0

, E2 =
1

4πε0

q2

r2
2 =

σ 2

ε0

, (4.6.7) 

 
where  σ1  and  σ 2  are the surface charge densities on spheres 1 and 2, respectively. 
Divided the magnitudes of the electric fields yields 
 

 
  

E1

E2

=
σ1

σ 2

=
r2

r1

. (4.6.8) 
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With the surface charge density being inversely proportional to the radius, we conclude 
that the regions with the smallest radii of curvature have the greatest σ . Thus, the 
electric field strength on the surface of a conductor is greatest at the sharpest point. The 
design of a lightning rod is based on this principle. Lighting strikes the tip.  
 
4.7 Continuous Non-Symmetric Charge Distributions 
 
If the charge distribution is continuous, the potential at a point P can be found by 
summing over the contributions from individual differential elements of charge  dq . 
 

 
 

Figure 4.7.1 Continuous charge distribution 
 
Consider the charge distribution shown in Figure 4.7.1. Taking infinity as our reference 
point with zero potential, the electric potential at P due to  dq  is  
 

 
  
dV = 1

4πε0

dq
r

. (4.7.1) 

 
Summing over contributions from all the differential elements, we have that 
 

 
  
V = 1

4πε0

dq
r∫ . (4.7.2) 

 
Example 4.7.1: Uniformly Charged Rod 
 
Consider a non-conducting rod of length    having a uniform charge density λ . Find the 
electric potential at  P , a perpendicular distance  y  above the midpoint of the rod. 
 
Solution: Consider a differential element of length  d ′x  that carries a charge  dq = λ d ′x , 
as shown in Figure 4.7.2. The source element is located at  ( ′x ,0) , while the field point P 
is located on the y-axis at   (0,y) . The distance from  d ′x  to P is   r = ( ′x 2 + y2 )1/ 2 .  Its 
contribution to the potential is given by 
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dV = 1

4πε0

dq
r

 = 1
4πε0

λ d ′x
( ′x 2 + y2 )1/ 2 .  

 
 

Figure 4.7.2 A non-conducting rod of length    and uniform charge densityλ .  
 
Taking  V to be zero at infinity, the total potential due to the entire rod is 
 

 

   

V = λ
4πε0

d ′x

′x 2 + y2− / 2

 / 2

∫ = λ
4πε0

ln ′x + ′x 2 + y2⎡
⎣⎢

⎤
⎦⎥

 / 2

− / 2

= λ
4πε0

ln
( / 2) + ( / 2)2 + y2

−( / 2) + ( / 2)2 + y2

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
,

 (4.7.3)  

 
where we have used the integration formula 

 
  

d ′x

′x 2 + y2
∫ = ln( ′x + ′x 2 + y2 ) .  

 
A plot of   V ( y) / V0 , where   V0 = λ / 4πε0 , as a function of    y /   is shown in Figure 4.7.3. 
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Figure 4.7.3 Electric potential along the axis that passes through the midpoint of a non-
conducting rod. 
 
In the limit      y,  the potential becomes 
 

 

   

V = λ
4πε0

ln
( / 2) +  / 2 1+ (2y / )2

−( / 2) +  / 2 1+ (2y / )2

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
= λ

4πε0

ln
1+ 1+ (2y / )2

−1+ 1+ (2y / )2

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

≈ λ
4πε0

ln 2
2y2 / 2

⎛
⎝⎜

⎞
⎠⎟
= λ

4πε0

ln 2

y2

⎛

⎝⎜
⎞

⎠⎟

= λ
2πε0

ln 
y

⎛
⎝⎜

⎞
⎠⎟

.

 (4.7.4)  

 
The corresponding electric field can be obtained as   
 

   
Ey = − ∂V

∂y
= λ

2πε0 y
 / 2

( / 2)2 + y2
, 

 
in agreement with the result obtained in Chapter 2, Eq. (2.10.9). 
 
Example 4.7.2: Uniformly Charged Ring 
 
Consider a uniformly charged ring of radius  R  and charge densityλ  (Figure 4.7.4). What 
is the electric potential at a distance z from the central axis? 
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Figure 4.7.4 A non-conducting ring of radius R with uniform charge densityλ . 
 
Solution: Consider a small differential element   d = R d ′φ  on the ring. The element 
carries a charge   dq = λ d = λR d ′φ , and its contribution to the electric potential at P is  
 

 
  
dV = 1

4πε0

dq
r

= 1
4πε0

λR d ′φ
R2 + z2

. 

 
The electric potential at P due to the entire ring is  
 

 
   
V = dV∫ = 1

4πε0

λR
R2 + z2

d ′φ∫ = 1
4πε0

2πλR
R2 + z2

= 1
4πε0

Q
R2 + z2

, (4.7.5) 

 
where we have substituted   Q = 2πRλ  for the total charge on the ring. In the limit 
 z >> R , the potential approaches its “point-charge” limit: 
 

 
  
V ≈ 1

4πε0

Q
z

. 

 
From Eq. (4.4.4) the z-component of the electric field may be obtained as  
 

 
  
Ez = − ∂V

∂z
= − ∂

∂z
1

4πε0

Q
R2 + z2

⎛

⎝⎜
⎞

⎠⎟
= 1

4πε0

Qz
(R2 + z2 )3/ 2 . (4.7.6) 

 
in agreement with Eq. (2.10.14). 
 
 
Example 4.7.3: Uniformly Charged Disk 
 
Consider a uniformly charged disk of radius  R  and charge densityσ  lying in the xy-
plane (Figure 4.7.5). What is the electric potential at a distance  z  from the central axis? 
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Figure 4.7.5 A non-conducting disk of radius R and uniform charge density σ.  
 
Solution: Consider a circular ring of radius  ′r  and width  d ′r . The charge on the ring is 
  d ′q = σd ′A = σ (2π ′r d ′r ). The field point P is located along the  z -axis a distance  z  
from the plane of the disk. From the figure, we also see that the distance from a point on 
the ring to P is   r = ( ′r 2 + z2 )1/ 2 .  Therefore, the contribution to the electric potential at P 
is 

 
  
dV = 1

4πε0

dq
r

= 1
4πε0

σ (2π ′r d ′r )

′r 2 + z2
.  

 
By summing over all the rings that make up the disk, we have 
 

 
  
V = σ

4πε0

2π ′r d ′r

′r 2 + z20

R

∫ = σ
2ε0

′r 2 + z2⎡
⎣⎢

⎤
⎦⎥

R

0

= σ
2ε0

R2 + z2 − | z |⎡
⎣⎢

⎤
⎦⎥ . (4.7.7)  

 
In the limit  | z |>> R , 

   
R2 + z2 =| z | 1+ R2

z2

⎛

⎝⎜
⎞

⎠⎟

1/ 2

=| z | 1+ R2

2z2 +
⎛

⎝⎜
⎞

⎠⎟
,  

 
and the potential simplifies to the point-charge limit: 
 

 
  
V ≈ σ

2ε0

⋅ R2

2 | z |
= 1

4πε0

σ (πR2 )
| z |

= 1
4πε0

Q
| z |

.  

 
As expected, at large distance, the potential due to a non-conducting charged disk is the 
same as that of a point charge Q. A comparison of the electric potentials of the disk and a 
point charge is shown in Figure 4.7.6. 
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Figure 4.7.6 Comparison of the electric potentials of a non-conducting disk and a point 
charge. The electric potential is measured in terms of   V0 = Q / 4πε0 R .  
 
Note that the electric potential at the center of the disk,   z = 0 , is finite, and its value is  
 

 
  
Vc =

σR
2ε0

= Q
πR2 ⋅

R
2ε0

= 1
4πε0

2Q
R

= 2V0 . (4.7.8) 

 
This is the amount of work that needs to be done to bring a unit charge from infinity and 
place it at the center of the disk.  
 
The corresponding electric field at P can be obtained as: 
 

 
  
Ez = − ∂V

∂z
= σ

2ε0

z
| z |

− z
R2 + z2

⎡

⎣
⎢

⎤

⎦
⎥ , (4.7.9)  

 
which agrees with Eq. (2.10.18). In the limit   R >> z,  the above equation becomes 

  Ez = σ / 2ε0 , which is the electric field for an infinitely large non-conducting sheet. 
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4.8 Summary 
 
• A force   


F  is conservative if the line integral of the force around a closed loop 

vanishes: 
 

    

F ⋅ d s = 0∫ . 

 
• The change in potential energy associated with a conservative force   F


 acting on an 

object as it moves from A to B is 
 

 
   
ΔU =U B −U A = −


F ⋅ d s

A

B

∫ .  

 
• The electric potential difference  ΔV  between points A and B in an electric field   


E  

is given by 

 
   
ΔV =VB −VA =

ΔU
qt

= −

E ⋅ ds

A

B

∫ .  

 
 The quantity represents the amount of work done per unit charge to move a test 

charge  qt  from point A to B, without changing its kinetic energy. 
 
• The electric potential due to a point charge  Q  at a distance r away from the charge is 
 

 
  
V =

1
4πε0

Q
r

.  

  
 For a collection of charges, using the superposition principle, the electric potential is 
 

 
  
V =

1
4πε0

Qi

rii
∑ . 

 
• The potential energy associated with two point charges   q1  and   q2  separated by a 

distance   r12  is 

 
  
U =

1
4πε0

q1q2

r12

.  

 
• From the electric potential  V , the electric field may be obtained by taking the 

gradient of  V , 
    


E = −∇V . 

 
 In Cartesian coordinates, the components may be written as  
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Ex = −

∂V
∂x

, Ey = −
∂V
∂y

, Ez = −
∂V
∂z

. 

 
• The electric potential due to a continuous charge distribution is 
 

 
  
V =

1
4πε0

dq
r∫ . 

 
  
4.9 Problem-Solving Strategy: Calculating Electric Potential 
 
In this chapter, we showed how electric potential could be calculated for both the discrete 
and continuous charge distributions. Unlike electric field, electric potential is a scalar 
quantity. For the discrete distribution, we apply the superposition principle and sum over 
individual contributions: 

 
 
V = ke

qi

rii
∑ . 

 
For the continuous distribution, we must evaluate the integral 
 

 
V = ke

dq
r∫ . 

 
In analogy to the case of computing the electric field, we use the following steps to 
complete the integration: 
 

(1) Start with 
 
dV = ke

dq
r

. 

 
(2) Rewrite the charge element dq as 
 

 

  

dq =
λ dl            (length)
σ dA          (area)
ρ dV           (volume)

⎧

⎨
⎪

⎩
⎪

 

 
depending on whether the charge is distributed over a length, an area, or a volume.  
 
(3) Substitute dq into the expression for  dV .  
 
(4) Specify an appropriate coordinate system and express the differential element ( dl , 
 dA  or  dV ) and r in terms of the coordinates (see Table 2.1.)  
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(5) Rewrite  dV  in terms of the integration variable. 
 
(6) Complete the integration to obtain V. 
 
Using the result obtained for  V , one may calculate the electric field by    


E = −∇V .  

Furthermore, choosing a point P that lies sufficiently far away from the charge 
distribution can readily check the accuracy of the result. In this limit, if the charge 
distribution is of finite extent, the field should behave as if the distribution were a point 
charge, and falls off as   1/ r 2 . 
 
Below we illustrate how the above methodologies can be employed to compute the 
electric potential for a line of charge, a ring of charge and a uniformly charged disk. 
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 Charged Rod Charged Ring Charged disk 

Figure 

 
 

 
(2) Express 
dq in terms 
of charge 
density 

 dq = λ d ′x   dq = λ dl   dq = σ dA  

(3) 
Substitute 

dq into 
expression 

for  dV 
 
dV = ke

λ d ′x
r

 
 
dV = ke

λ dl
r

 
 
dV = ke

σdA
r

 

(4) Rewrite 
r and the 

differential 
element in 
terms of 

the 
appropriate 
coordinates 

 d ′x  
 

  r = ′x 2 + y2  

 dl = R d ′φ  
 

  r = R2 + z2  

  dA = 2π ′r d ′r  
 

  r = ′r 2 + z2  

(5) Rewrite 
dV 

  
dV = ke

λ d ′x
( ′x 2 + y2 )1/ 2  

  
dV = ke

λR d ′φ
(R2 + z2 )1/ 2

 
  
dV = ke

2πσ ′r d ′r
( ′r 2 + z2 )1/ 2

 

(6) 
Integrate to 

get V 

 

   

V = λ
4πε0

d ′x

′x 2 + y2− / 2

 / 2

∫

= λ
4πε0

ln
( / 2) + ( / 2)2 + y2

−( / 2) + ( / 2)2 + y2

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

 

   

V = ke

Rλ
(R2 + z2 )1/ 2 d ′φ∫

= ke

(2πRλ)

R2 + z2

= ke

Q

R2 + z2

 

  

V = ke 2πσ ′r d ′r
( ′r 2 + z2 )1/ 20

R

∫
= 2keπσ z2 + R2 − | z |( )
=

2keQ
R2 z2 + R2 − | z |( )

 

Derive E 
from V 

 

   

Ey = − ∂V
∂y

= λ
2πε0 y

 / 2

( / 2)2 + y2

 
  
Ez = −

∂V
∂z

=
keQz

(R2 + z2 )3/ 2
 

 

  
Ez = −

∂V
∂z

=
2keQ

R2

z
| z |

−
z

z2 + R2

⎛

⎝⎜
⎞

⎠⎟
 

Point-
charge 

limit for E    
Ey ≈

keQ
y2     y   

 

   
Ez ≈

keQ
z2      z  R  

 
   
Ez ≈

keQ
z2     z  R  
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4.10 Solved Problems  
 
4.10.1 Electric Potential Due to a System of Two Charges 
 
Consider a system of two charges shown in Figure 4.10.1.  
 

 
Figure 4.10.1 Electric dipole 

 
Find the electric potential at an arbitrary point on the x-axis and make a plot. 
 
Solution: The electric potential can be found by the superposition principle. At a point on 
the x-axis, we have 
 

 
  
V (x) =

1
4πε0

q
| x − a |

+
1

4πε0

(−q)
| x + a |

=
q

4πε0

1
| x − a |

−
1

| x + a |
⎡

⎣
⎢

⎤

⎦
⎥ .   

 
The above expression may be rewritten as 
 

 
  

V (x)
V0

=
1

| x / a −1|
−

1
| x / a +1|

,   

where   V0 = q / 4πε0a .  

 
 

Figure 4.10.2 
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The plot of the dimensionless electric potential as a function of x/a. is depicted in Figure 
4.10.2. As can be seen from the graph,   V (x) diverges at   x / a = ±1, where the charges are 
located.  
 
 
4.10.2 Electric Dipole Potential 
 
Consider an electric dipole along the y-axis, as shown in the Figure 4.10.3. Find the 
electric potential  V  at a point P in the x-y plane, and use  V  to derive the corresponding 
electric field. 

                                                 
Figure 4.10.3 

 
By superposition principle, the potential at P is given by 
 

 
  
V = Vi =

i
∑ 1

4πε0

q
r+

− q
r−

⎛

⎝⎜
⎞

⎠⎟
, 

 
where    r±

2 = r 2 + a2  2racosθ .  If we take the limit where   r >> a,  then    
 

 
   

1
r±

= 1
r

1+ (a / r)2  2(a / r)cosθ⎡⎣ ⎤⎦
−1/ 2

= 1
r

1− 1
2

(a / r)2 ± (a / r)cosθ +
⎡

⎣
⎢

⎤

⎦
⎥ .  

 
The dipole potential can be approximated as  
 

 

    

V = q
4πε0r

1− 1
2

(a / r)2 + (a / r)cosθ −1+ 1
2

(a / r)2 + (a / r)cosθ +
⎡

⎣
⎢

⎤

⎦
⎥

≈ q
4πε0r

⋅ 2acosθ
r

= pcosθ
4πε0r

2 =
p ⋅ r̂

4πε0r
2 ,
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where     
p = 2aq ĵ  is the electric dipole moment. In spherical polar coordinates, the 

gradient operator is 

 
    


∇ = ∂

∂r
r̂ + 1

r
∂
∂θ

θ̂ + 1
r sinθ

∂
∂φ

φ̂   

 
Because the potential is now a function of both r and θ , the electric field will have 
components along the   ̂r - and  θ̂ -directions. Using    


E = −∇V , we have 

 

 
  
Er = − ∂V

∂r
= pcosθ

2πε0r
3 , Eθ = − 1

r
∂V
∂θ

= psinθ
4πε0r

3 , Eφ = 0 .  

 
4.10.3 Electric Potential of an Annulus 
 
Consider an annulus of uniform charge density σ , as shown in Figure 4.10.4. Find the 
electric potential at a point P along the symmetric axis. 
 

 
 

Figure 4.10.4 An annulus of uniform charge density. 
 
Solution: Consider a small differential element dA at a distance r away from point P. The 
amount of charge contained in dA is given by 
 
   dq = σdA = σ (r 'dθ)dr ' .  
 
Its contribution to the electric potential at P is 
 

 
  
dV =

1
4πε0

dq
r

=
1

4πε0

σr 'dr 'dθ

r '2+ z2
.  

 
Integrating over the entire annulus, we obtain 
 

 
  
V =

σ
4πε0

r 'dr 'dθ

r '2+ z20

2π

∫a

b

∫ =
2πσ
4πε0

r 'ds

r '2+ z2a

b

∫ =
σ

2ε0

b2 + z2 − a2 + z2⎡
⎣⎢

⎤
⎦⎥ ,  
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where we have made used of the integral 
 

 
  

dss

s2 + z2∫ = s2 + z2 .  

 
Notice that in the limit   a → 0  and  b→ R , the potential becomes 
 

 
  
V =

σ
2ε0

R2 + z2 − | z |⎡
⎣⎢

⎤
⎦⎥ ,  

 
which agrees with the result of a non-conducting disk of radius R shown in Eq. (4.7.7). 
 
4.10.4 Charge Moving Near a Charged Wire 
 
A thin rod extends along the  z -axis from  z = −d  to  z = d . The rod carries a positive 
charge Q  uniformly distributed along its length 2d  with charge density   λ = Q / 2d .  
 
(a) Calculate the electric potential at a point  z > d along the  z -axis.   
 
(b) What is the change in potential energy if an electron moves from  z = 4d  to  z = 3d ?  
 
(c) If the electron started out at rest at the point  z = 4d , what is its velocity at  z = 3d ? 
 
Solutions: 
 
(a) For simplicity, let’s set the potential to be zero at infinity,   V (∞) = 0 . Consider an 
infinitesimal charge element  dq = λ d ′z  located at a distance   z '  along the z-axis. Its 
contribution to the electric potential at a point  z > d  is 
 

 
  
dV =

λ
4πε0

dz '
z − z '

. 

 
Integrating over the entire length of the rod, we obtain 
 

 
  
V (z) =

λ
4πε0

dz'
z − z'z+d

z−d

∫ =
λ

4πε0

ln
z + d
z − d

⎛
⎝⎜

⎞
⎠⎟

.  

 
(b) Using the result derived in (a), the electrical potential at  z = 4d  is 
 

 
  
V (z = 4d) =

λ
4πε0

ln
4d + d
4d − d

⎛
⎝⎜

⎞
⎠⎟
=

λ
4πε0

ln
5
3

⎛
⎝⎜

⎞
⎠⎟

.  
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Similarly, the electrical potential at  z = 3d  is 
 

 
  
V (z = 3d) =

λ
4πε0

ln
3d + d
3d − d

⎛
⎝⎜

⎞
⎠⎟
=

λ
4πε0

ln2 .  

 
The electric potential difference between the two points is  
 

 
  
ΔV =V (z = 3d) −V (z = 4d) =

λ
4πε0

ln
6
5

⎛
⎝⎜

⎞
⎠⎟
> 0 .  

 
Using the fact that the electric potential difference  ΔV  is equal to the change in potential 
energy per unit charge, we have  
 

 
  
ΔU = qΔV = −

| e | λ
4πε0

ln
6
5

⎛
⎝⎜

⎞
⎠⎟
< 0 ,  

 
where  q = −e  is the charge of the electron.  
 
(c) If the electron starts out at rest at  z = 4d  then the change in kinetic energy is  
 

 
  
ΔK =

1
2

mv f
2 .  

 
By conservation of energy, the change in kinetic energy is 
 

 
  
ΔK = −ΔU =

| e | λ
4πε0

ln
6
5

⎛
⎝⎜

⎞
⎠⎟
> 0 .  

 
Thus, the magnitude of the velocity at   z = 3d  is 
 

 
  
v f =

2 | e |
4πε0

λ
m

ln
6
5

⎛
⎝⎜

⎞
⎠⎟

.  

 
 
4.10.5 Electric Potential of a Uniformly Charged Sphere 
 
An insulated solid sphere of radius  a  has a uniform charge density ρ. Compute the 
electric potential everywhere.  
 
Solution: Using Gauss’s law, we showed in Example 3.4 that the electric field due to the 
charge distribution is  
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
E =

Q
4πε0r

2 r̂, r > a

Qr
4πε0a

3 r̂, r < a.

⎧

⎨
⎪
⎪

⎩
⎪
⎪

 (4.10.1) 

 
The electric potential at   P1  (indicated in Figure 4.10.5) outside the sphere is 
 

 
  
V1(r) −V (∞) = − Q

4πε0 ′r 2∞

r

∫ d ′r = 1
4πε0

Q
r
= ke

Q
r

. (4.10.2)  

 
 
 

       
 
 
 

Figure 4.10.5 

 
 
Figure 4.10.6 Electric potential due to 
a uniformly charged sphere as a 
function of r. 

 
On the other hand, the electric potential at   P2  inside the sphere is given by 
 

 

  

V2 (r) −V (∞) = − drE r > a( )
∞

a

∫ − E r < a( )
a

r

∫ = − dr Q
4πε0r

2∞

a

∫ − d ′r Qr
4πε0a

3 ′r
a

r

∫

= 1
4πε0

Q
a
− 1

4πε0

Q
a3

1
2

r 2 − a2( ) = 1
8πε0

Q
a

3− r 2

a2

⎛

⎝⎜
⎞

⎠⎟

= ke

Q
2a

3− r 2

a2

⎛

⎝⎜
⎞

⎠⎟
.

 (4.10.3)  

 
A plot of electric potential as a function of r is given in Figure 4.10.6: 
 
 
4.11 Conceptual Questions 
 
1. What is the difference between electric potential and electric potential energy? 
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2. A uniform electric field is parallel to the x-axis.  In what direction can a charge be    
displaced in this field without any external work being done on the charge? 

 
3. Is it safe to stay in an automobile with a metal body during severe thunderstorm? 

Explain. 
 
4. Why are equipotential surfaces always perpendicular to electric field lines?  
 
5. The electric field inside a hollow, uniformly charged sphere is zero.  Does this imply 

that the potential is zero inside the sphere? 
 
 
4.12 Additional Problems 
 
4.12.1 Cube 
 
How much work is done to assemble eight identical point charges, each of magnitude q, 
at the corners of a cube of side a? 
 
4.12.2 Three Charges  
 
Three point-like objects with charges with   q = 3.00 ×10−18  C  and   q1 = 6 ×10−6  C  are 
placed on the x-axis, as shown in the Figure 4.12.1. The distance between q and q1 is a = 
0.600 m.  
 

                     
Figure 4.12.1  

 
(a) What is the net force exerted on q by the other two charges q1?   
 
(b) What is the electric field at the origin due to the two charges q1?   
 
(c) What is the electric potential at the origin due to the two charges q1? 
 
 
4.12.3 Work Done on Charges 

 
Two charges   q1 = 3.0µC  and   q2 = −4.0µC  initially are separated by a distance 

  r0 = 2.0cm . An external agent moves the charges until they are   
rf = 5.0cm  apart.  
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(a) How much work is done by the electric field in moving the charges from   r0  to  

rf ? Is 
the work positive or negative? 
 
(b) How much work is done by the external agent in moving the charges from   r0  to 

rf ? Is 
the work positive or negative? 
 
(c) What is the potential energy of the initial state where the charges are   r0 = 2.0cm  
apart?  
 
(d) What is the potential energy of the final state where the charges are   

rf = 5.0cm  apart?  
 
(e) What is the change in potential energy from the initial state to the final state? 
 
4.12.4 Calculating E from V 
 
Suppose in some region of space the electric potential is given by 
 

  
V (x, y, z) =V0 − E0z +

E0a
3z

(x2 + y2 + z2 )3/ 2
, 

 
where  a  is a constant with dimensions of length. Find the x, y, and the z-components of 
the associated electric field. 
 
4.12.5 Electric Potential of a Rod 
 
A rod of length L lies along the x-axis with its left end at the origin and has a non-
uniform charge density  λ = αx , where α  is a positive constant (Figure 4.12.2).   
 

 
Figure 4.12.2  

 
(a) What are the dimensions of α ?   
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(b) Calculate the electric potential at A. 
 
(c) Calculate the electric potential at point B that lies along the perpendicular bisector of 
the rod a distance b above the x-axis.  
 
4.12.6 Electric Potential 
 
Suppose that the electric potential in some region of space is given by 
 

  V (x, y, z) = V0 exp(−k | z |)cos kx . 
 
Find the electric field everywhere. Sketch the electric field lines in the  xz -plane. 
 
 
4.12.7 Calculating Electric Field from the Electric Potential 
 
Suppose that the electric potential varies along the x-axis as shown in Figure 4.12.3 
below.   

 
Figure 4.12.3 

 
The potential does not vary in the y- or z-direction.  Of the intervals shown (ignore the 
behavior at the end points of the intervals), determine the intervals in which  Ex  has  
 
(a) its greatest absolute value. [Ans.  25 V/m in the interval ab.] 
 
(b) its least absolute value.  [Ans. (b) 0 V/m in the interval cd.] 
 
(c) Plot  Ex  as a function of x.    
 
(d) What sort of charge distributions would produce these kinds of changes in the 
potential?  Where are they located?  [Ans. sheets of charge extending in the yz-direction 
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located at points b, c, d, etc. along the x-axis. Note again that a sheet of charge with 
charge per unit area σ will always produce a jump in the normal component of the 
electric field of magnitude  σ / ε0 ]. 
 
4.12.8 Electric Potential and Electric Potential Energy 
 
A right isosceles triangle of side a has charges q, +2q, and −q arranged on its vertices, as 
shown in Figure 4.12.4.   

           
Figure 4.12.4 

 
(a) What is the electric potential at point P, midway between the line connecting the +q 
and  −q  charges, assuming that V  = 0 at infinity?  [Ans. q / 2πε0a .] 
 
(b) What is the potential energy U of this configuration of three charges?  What is the 
significance of the sign of your answer? [Ans. −q2 / 4 2πε0a , the negative sign means 
that work was done on the agent who assembled these charges in moving them in from 
infinity.] 
 
(c) A fourth charge with charge +3q is slowly moved in from infinity to point P.  How 
much work must be done in this process?  What is the significance of the sign of your 
answer?  [Ans. +3q2 / 2πε0a , the positive sign means that work was done by the agent 
who moved this charge in from infinity.] 
 
4.12.9. Electric Field, Potential and Energy  
 
Three charges, +5Q, −5Q, and +3Q are located on the y-axis at y = +4a, y = 0, and 
  y = −4a , respectively.  The point P is on the x-axis at x = 3a. 
 
(a) How much energy did it take to assemble these charges? 
 
(b) What are the x, y, and z components of the electric field   


E  at P? 

 
(c) What is the electric potential V at point P, taking V = 0 at infinity? 
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(d) A fourth charge of +Q is brought to P from infinity. What are the x, y, and z 
components of the force   


F  that is exerted on it by the other three charges? 

 
(e) How much work was done (by the external agent) in moving the fourth charge +Q 
from infinity to P? 
 
4.12.10 P-N Junction 
 
When two slabs of N-type and P-type semiconductors are put in contact, the relative 
affinities of the materials cause electrons to migrate out of the N-type material across the 
junction to the P-type material. This leaves behind a volume in the N-type material that is 
positively charged and creates a negatively charged volume in the P-type material. 
 
Let us model this as two infinite slabs of charge, both of thickness a  with the junction 
lying on the plane  z = 0 . The N-type material lies in the range  0 < z < a  and has uniform 
charge density +ρ0 . The adjacent P-type material lies in the range  −a < z < 0  and has 
uniform charge density −ρ0 . Thus: 
 

  

ρ(x, y, z) = ρ(z) =

+ρ0 0 < z< a

−ρ0 − a< z< 0

0 | z |>a.

⎧

⎨
⎪⎪

⎩
⎪
⎪

 

 
(a) Find the electric field everywhere. 
 
(b) Find the potential difference between the points P1  and P2. . The point P1. is located on 
a plane parallel to the slab a distance  z1 > a  from the center of the slab. The point P2.  is 
located on plane parallel to the slab a distance  z2 < −a  from the center of the slab. 
 
4.12.11 Sphere with Non-Uniform Charge Distribution 
 
A sphere made of insulating material of radius  R  has a charge density  ρ = ar  where  a  
is a constant. Let  r  be the distance from the center of the sphere. 
 
(a) Find the electric field everywhere, both inside and outside the sphere.  
 
(b) Find the electric potential everywhere, both inside and outside the sphere. Be sure to 
indicate where you have chosen your zero potential. 
 
(c) How much energy does it take to assemble this configuration of charge? 
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(d) What is the electric potential difference between the center of the cylinder and a 
distance  r  inside the cylinder? Be sure to indicate where you have chosen your zero 
potential. 
 
4.12.12 Electric Potential Energy of a Solid Sphere 
 
Calculate the electric potential energy of a solid sphere of radius R filled with charge of 
uniform density ρ.  Express your answer in terms of  Q , the total charge on the sphere. 
 
 
4.12.13 Calculating Electric Field from Electrical Potential  
 
Figure 4.12.5 shows the variation of an electric potential  V  with distance z.  The 
potential  V  does not depend on x or y.  The potential  V  in the region   −1m < z < 1m  is 
given in Volts by the expression   V (z) = 15− 5z2 . Outside of this region, the electric 
potential varies linearly with z, as indicated in the graph. 

 

                   
Figure 4.12.5 

 
(a) Find an equation for the z-component of the electric field,  Ez , in the region 

  −1m < z < 1m .    
 
(b) What is  Ez  in the region z  > 1 m?  Be careful to indicate the sign of Ez ? 
 
(c) What is  Ez  in the region z  < −1 m?  Be careful to indicate the sign of Ez ? 
 
(d) This potential is due a slab of charge with constant charge per unit volume  ρ0 .  
Where is this slab of charge located (give the z-coordinates that bound the slab)?  What is 
the charge density  ρ0  of the slab in C/m3?  Be sure to give clearly both the sign and 
magnitude of  ρ0 .     




