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Gauss’s Law 

 
 
3.1 Electric Flux 
 
In Chapter 2 we showed that the strength of an electric field is proportional to the number 
of field lines per area.  The number of electric field lines that penetrates a given surface is 
called an “electric flux,” which we denote as  ΦE . The electric field can therefore be 
thought of as the number of lines per unit area. 

 

 
 

Figure 3.1.1   Electric field lines passing through a surface of area A. 
 
Consider the surface shown in Figure 3.1.1. Let     


A = An̂  be defined as the area vector 

having a magnitude of the area of the surface,  A , and pointing in the normal direction, 
  n̂ . If the surface is placed in a uniform electric field   E


 that points in the same  direction 

as   n̂ , i.e., perpendicular to the surface A, the flux through the surface is 
 
     ΦE =


E ⋅

A =

E ⋅ n̂ A = EA . (3.1.1) 

 
On the other hand, if the electric field   E


 makes an angle θ  with   n̂  (Figure 3.1.2), the 

electric flux becomes 
     ΦE =


E ⋅

A = EAcosθ = En A , (3.1.2) 

 
where     En =


E ⋅ n̂  is the component of   


E  perpendicular to the surface. 
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Figure 3.1.2 Electric field lines passing through a surface of area A whose normal makes 
an angle θ  with the field. 
 
Note that with the definition for the normal vector   n̂ , the electric flux  ΦE  is positive if 
the electric field lines are leaving the surface, and negative if entering the surface. 
 
In general, a surface S can be curved and the electric field   E


 may vary over the surface. 

We shall be interested in the case where the surface is closed. A closed surface is a 
surface that completely encloses a volume. In order to compute the electric flux, we 
divide the surface into a large number of infinitesimal area elements     Δ


A i = ΔAi n̂i , as 

shown in Figure 3.1.3. Note that for a closed surface the unit vector    n̂i  is chosen to point 
in the outward normal direction. 
 

 
 

Figure 3.1.3 Electric field passing through an area element    Δ

A i , making an angle θ  

with the normal of the surface. 
 
The electric flux through    Δ


A i  is 

 
     ΔΦE =


Ei ⋅ Δ


A i = EiΔAi cosθ . (3.1.3) 
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The total flux through the entire surface can be obtained by summing over all the area 
elements. Taking the limit     Δ


A i → 0  and the number of elements to infinity, we have 

 
 

    
ΦE = lim

ΔAi→0


Ei ⋅ d


A∑ i

=

E ⋅ d

A

S
∫∫ , (3.1.4) 

 
where the symbol 

  S

∫∫ denotes a double integral over a closed surface S. In order to 

evaluate the above integral, we must first specify the surface and then sum over the dot 
product    E


⋅ d

A . 

 
 
3.2 Gauss’s Law  (see also Gauss’s Law Simulation in Section 3.10) 
 
We now introduce Gauss’s Law.  Many of the conceptual problems students have with 
Gauss’s Law have to do with understanding the geometry, and we urge you to read the 
standard development below and then go to the Gauss’s Law simulation in Section 3.10.  
There you can interact directly with the relevant geometry in a 3D interactive simulation 
of Gauss’s Law. 
 
Consider a positive point charge Q located at the center of a sphere of radius r, as shown 
in Figure 3.2.1. The electric field due to the charge Q is     E


= (Q / 4πε0r

2 )r̂ , which points 
in the radial direction. We enclose the charge by an imaginary sphere of radius r called 
the “Gaussian surface.” 
 

 
 

Figure 3.2.1   A spherical Gaussian surface enclosing a charge Q . 
 
In spherical coordinates, a small surface area element on the sphere is given by (Figure 
3.2.2) 
     d


A = r 2 sinθ dθ  dφ  r̂ . (3.2.1) 
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Figure 3.2.2 A small area element on the surface of a sphere of radius r. 

 
Thus, the net electric flux through the area element is 
 

 
    
dΦE =


E ⋅ d

A = E dA =

1
4πε0

Q
r 2

⎛

⎝⎜
⎞

⎠⎟
r 2 sinθ dθ  dφ( )  = Q

4πε0

sinθ dθ  dφ . (3.2.2) 

 
The total flux through the entire surface is 
 

 
    
ΦE =


E ⋅ d

A

S
∫∫ =

Q
4πε0

sinθ dθ  dφ
0

2π

∫0

π

∫  =
Q
ε0

.  (3.2.3) 

 
The same result can also be obtained by noting that a sphere of radius r has a surface area 
  A = 4πr 2 , and since the magnitude of the electric field at any point on the spherical 
surface is   E = Q / 4πε0r

2 , the electric flux through the surface is 
 

 
    
ΦE =


E ⋅

S
∫∫ d


A = E dA

S
∫∫ = EA =

1
4πε0

Q
r 2

⎛

⎝⎜
⎞

⎠⎟
4πr 2 =

Q
ε0

.  (3.2.4) 

 
In the above, we have chosen a sphere to be the Gaussian surface. However, it turns out 
that the shape of the closed surface can be arbitrarily chosen. For the surfaces shown in 
Figure 3.2.3, the same result (  ΦE = Q / ε0 ) is obtained, whether the choice is   S1 ,   S2  or 

  S3 . 
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Figure 3.2.3   Different Gaussian surfaces with the same outward electric flux. 

 
The statement that the net flux through any closed surface is proportional to the net 
charge enclosed is known as Gauss’s law. Mathematically, Gauss’s law is expressed as 
 

 
    
ΦE = E


⋅ d

A

S
∫∫ =

qenc

ε0

(Gauss's Law),  (3.2.5) 

 
where   qenc  is the net charge inside the surface. One way to explain why Gauss’s law 
holds is due to note that the number of field lines that leave the charge is independent of 
the shape of the imaginary Gaussian surface we choose to enclose the charge. 
 
To prove Gauss’s law, we introduce the concept of the solid angle. Let     Δ


A1 = ΔA1 r̂  be 

an area element on the surface of a sphere   S1  of radius   r1 , as shown in Figure 3.2.4. 

 

 
 

Figure 3.2.4 The area element  ΔA  subtends a solid angleΔΩ . 
 
The solid angle ΔΩ  subtended by     Δ


A1 = ΔA1 r̂  at the center of the sphere is defined as 
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ΔΩ ≡

ΔA1

r1
2 .  (3.2.6) 

 
Solid angles are dimensionless quantities measured in steradians  [sr] . Since the surface 
area of the sphere   S1  is   4πr1

2 , the total solid angle subtended by the sphere is 
 

 
  
Ω =

4πr1
2

r1
2 = 4π .  (3.2.7) 

 
The concept of solid angle in three dimensions is analogous to the ordinary angle in two 
dimensions. 

 
 

Figure 3.2.5 The arc  Δs  subtends an angle Δϕ . 
 
As illustrated in Figure 3.2.5, an angle Δϕ  is the ratio of the length of the arc to the 
radius  r  of a circle: 

 
  
Δϕ =

Δs
r

.  (3.2.8) 

 
Because the total length of the arc is   s = 2πr , the total angle subtended by the circle is 
 

 
  
ϕ =

2πr
r

= 2π .  (3.2.9) 

 
In Figure 3.2.4, the area element    Δ


A2  makes an angle θ  with the radial unit vector   ̂r , 

therefore the solid angle subtended by   ΔA2  is 
 

 
    
ΔΩ =

Δ

A2 ⋅ r̂
r2

2
=
ΔA2 cosθ

r2
2

=
ΔA2n

r2
2

,  (3.2.10) 

 



 
 

3-8 

where   ΔA2n = ΔA2 cosθ  is the area of the radial projection of   ΔA2  onto a second sphere 

  S2 of radius   r2 , concentric with   S1 . As shown in Figure 3.2.4, the solid angle subtended 
is the same for both   ΔA1  and   ΔA2n : 

 
  
ΔΩ =

ΔA1

r1
2
=
ΔA2cosθ

r2
2

.  (3.2.11) 

 
Now suppose a point charge Q is placed at the center of the concentric spheres. The 
electric field strengths   E1  and   E2  at the center of the area elements   ΔA1  and   ΔA2  are 
related by Coulomb’s law: 

 
  
Ei =

1
4πε0

Q
ri

2    ⇒    
E2

E1

=
r1

2

r2
2 .  (3.2.12) 

 
The electric flux through   ΔA1  on S1 is 
 
     ΔΦ1 =


E ⋅ Δ

A1 = E1 ΔA1.  (3.2.13) 

 
On the other hand, the electric flux through   ΔA2  on   S2 is   ΔA2cosθ  
 

 
    
ΔΦ2 =


E2 ⋅ Δ


A2 = E2 ΔA2cosθ = E1

r1
2

r2
2

⎛

⎝
⎜

⎞

⎠
⎟ ⋅

r2
2

r1
2

⎛

⎝
⎜

⎞

⎠
⎟ A1 = E1 ΔA1 = −


E1 ⋅ Δ


A1 = −ΔΦ1. (3.2.14) 

 
Thus, we see that the electric flux through any area element subtending the same solid 
angle is constant, independent of the shape or orientation of the surface. 
 
In summary, Gauss’s law provides a convenient tool for evaluating electric field. 
However, its application is limited only to systems that possess certain symmetry, 
namely, systems with cylindrical, planar and spherical symmetry. In the table below, we 
give some examples of systems in which Gauss’s law is applicable for determining 
electric field, with the corresponding Gaussian surfaces: 
 

Symmetry System Gaussian Surface Examples 
Cylindrical Infinite rod Coaxial Cylinder Example 3.1 
Planar Infinite plane Gaussian “Pillbox” Example 3.2 

Spherical Sphere, Spherical shell Concentric Sphere Examples 3.3 & 3.4 

 
The following steps may be useful when applying Gauss’s law: 
 
(1) Identify the symmetry associated with the charge distribution. 
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(2) Determine the direction of the electric field, and a “Gaussian surface” on which the 
magnitude of the electric field is constant over portions of the surface. 
 
(3) Divide the space into different regions associated with the charge distribution. For 
each region, calculate   qenc , the charge enclosed by the Gaussian surface. 
 
(4) Calculate the electric flux  ΦE  through the Gaussian surface for each region. 

 
(5) Equate  ΦE  with   qenc / ε0 , and deduce the magnitude of the electric field. 
 
 
Example 3.1: Infinitely Long Rod of Uniform Charge Density 
 
An infinitely long rod of negligible radius has a uniform charge density λ . Calculate the 
electric field at a distance  r  from the wire. 
 
Solution: We shall solve the problem by following the steps outlined above. 
 
(1) An infinitely long rod possesses cylindrical symmetry. 
 
(2) The charge density is uniformly distributed throughout the length, and the electric 
field   


E  must be point radially away from the symmetry axis of the rod (Figure 3.2.6). 

The magnitude of the electric field is constant on cylindrical surfaces of radius  r . 
Therefore, we choose a coaxial cylinder as our Gaussian surface. 
 

 
 
 

Figure 3.2.6 Field lines for an infinite 
uniformly charged rod (the symmetry 
axis of the rod and the Gaussian cylinder 
are perpendicular to plane of the page.) 
 

 
 
Figure 3.2.7 Gaussian surface for a 
uniformly charged rod. 

 
(3) The amount of charge enclosed by the Gaussian surface, a cylinder of radius  r  and 
length    (Figure 3.2.7), is    qenc = λ . 
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(4) As indicated in Figure 3.2.7, the Gaussian surface consists of three parts: two end-cap 
surfaces   S1  and   S2  plus the cylindrical sidewall   S3 . The flux through the Gaussian 
surface is 

 

    

ΦE =

E ⋅ d

A

S
∫∫ =


E1 ⋅ d


A1

S1

∫∫ +

E2 ⋅ d


A2

S2

∫∫ +

E3 ⋅ d


A3

S3

∫∫
                        = 0 + 0 + E3 A3 = E(2πr),

 (3.2.15) 

 
where we have set   E3 = E . As can be seen from the figure, no flux passes through the 
ends since the area vectors     d


A1  and     d


A2  are perpendicular to the electric field which 

points in the radial direction. 
 
(5) Applying Gauss’s law gives    E(2πr) = λ / ε0 , or 
 

 
  
E =

λ
2πε0r

. (3.2.16) 

 
The result is in complete agreement with that obtained in Eq. (2.10.11) using Coulomb’s 
law. Notice that the result is independent of the length    of the cylinder, and only 
depends on the inverse of the distance  r  from the symmetry axis. The qualitative 
behavior of  E  as a function of  r  is plotted in Figure 3.2.8. 
 

 
 

Figure 3.2.8 Electric field due to a uniformly charged rod as a function of  r . 
 
 
Example 3.2: Infinite Plane of Charge 
 
Consider an infinitely large non-conducting plane in the xy-plane with uniform surface 
charge density σ . Determine the electric field everywhere in space. 
 
Solution: 
 
(1) An infinitely large plane possesses a planar symmetry. 
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(2) Since the charge is uniformly distributed on the surface, the electric field   

E  must 

point perpendicularly away from the plane,     

E = E k̂ . The magnitude of the electric field 

is constant on planes parallel to the non-conducting plane. 
 

 
 
Figure 3.2.9 Electric field for uniform 
plane of charge 
 

 
 
Figure 3.2.10 A Gaussian “pillbox” for 
calculating the electric field due to a 
large plane. 

 
 
We choose our Gaussian surface to be a cylinder, which is often referred to as a “pillbox” 
(Figure 3.2.10). The pillbox also consists of three parts: two end-caps   S1  and   S2 , and a 
curved side   S3 . 
 
(3) Since the surface charge distribution on is uniform, the charge enclosed by the 
Gaussian “pillbox” is   qenc = σ A , where   A = A1 = A2  is the area of the end-caps. 
 
(4) The total flux through the Gaussian pillbox flux is 
 

 

    

ΦE =

E ⋅ d

A

S
∫∫ =


E1 ⋅ d


A1

S1

∫∫ +

E2 ⋅ d


A2

S2

∫∫ +

E3 ⋅ d


A3

S3

∫∫
= E1A1 + E2 A2 + 0
= (E1 + E2 )A.

 (3.2.17) 

 
Because the two ends are at the same distance from the plane, by symmetry, the 
magnitude of the electric field must be the same:   E1 = E2 = E . Hence, the total flux can 
be rewritten as 
   ΦE = 2EA.  (3.2.18) 
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(5) By applying Gauss’s law, we obtain 

  
2EA =

qenc

ε0

=
σ A
ε0

. 

 
Therefore the magnitude of the electric field is 
 

 
  
E =

σ
2ε0

. (3.2.19) 

In vector notation, we have 

 

    


E =

σ
2ε0

k̂, z > 0

−
σ

2ε0

k̂, z < 0.

⎧

⎨
⎪
⎪

⎩
⎪
⎪

 (3.2.20) 

 
Thus, we see that the electric field due to an infinite large non-conducting plane is 
uniform in space. The result, plotted in Figure 3.2.11, is the same as that obtained in Eq. 
(2.10.20) using Coulomb’s law. 
 

 
 

Figure 3.2.11 Electric field of an infinitely large non-conducting plane. 
 
Note again the discontinuity in electric field as we cross the plane: 
 

 
  
ΔEz = Ez+ − Ez− =

σ
2ε0

− −
σ

2ε0

⎛

⎝⎜
⎞

⎠⎟
=
σ
ε0

.  (3.2.21) 

 
Example 3.3: Spherical Shell 
 
A thin spherical shell of radius  a  has a charge  +Q  evenly distributed over its surface. 
Find the electric field both inside and outside the shell. 
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Solutions: 
 
The charge distribution is spherically symmetric, with a surface charge density 

  σ = Q / As = Q / 4πa2 , where   As = 4πa2  is the surface area of the sphere. The electric 
field   


E  must be radially symmetric and directed outward (Figure 3.2.12). We treat the 

regions  r ≤ a  and  r ≥ a  separately. 

 
 

Figure 3.2.12 Electric field for uniform spherical shell of charge 
 
Case 1:  r ≤ a . We choose our Gaussian surface to be a sphere of radius  r ≤ a , as shown 
in Figure 3.2.13(a). 
 

(a) 
(b) 

 
Figure 3.2.13 Gaussian surface for uniformly charged spherical shell for (a)  r < a , and 
(b)  r ≥ a . 
 
The charge enclosed by the Gaussian surface is   qenc = 0  since all the charge is located on 

the surface of the shell. Thus, from Gauss’s law,   ΦE = qenc / ε0 , we conclude 
 
   E = 0, r < a.  (3.2.22) 
 
Case 2:  r ≥ a . In this case, the Gaussian surface is a sphere of radius  r ≥ a , as shown in 
Figure 3.2.13(b). Since the radius of the “Gaussian sphere” is greater than the radius of 
the spherical shell, all the charge is enclosed   qenc = Q . Because the flux through the 
Gaussian surface is  
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ΦE =


E ⋅ d

A

S
∫∫ = EA = E(4πr 2 ) , 

by applying Gauss’s law, we obtain 
 

 
  
E =

Q
4πε0r

2 = ke

Q
r 2 , r ≥ a.  (3.2.23) 

 
Note that the field outside the sphere is the same as if all the charges were concentrated at 
the center of the sphere. The qualitative behavior of  E  as a function of  r  is plotted in 
Figure 3.2.14. 

 
 

Figure 3.2.14 Electric field as a function of  r  due to a uniformly charged spherical shell. 
 
As in the case of a non-conducting charged plane, we again see a discontinuity in E as we 
cross the boundary at  r = a . The change, from outer to the inner surface, is given by 
 

  
ΔE = E+ − E− =

Q
4πε0a

2 − 0 =
σ
ε0

. 

 
Example 3.4: Non-Conducting Solid Sphere 
 
An electric charge  +Q  is uniformly distributed throughout a non-conducting solid sphere 
of radius  a . Determine the electric field everywhere inside and outside the sphere. 
 
Solution: The charge distribution is spherically symmetric with the charge density given 
by 

 
  
ρ =

Q
V

=
Q

(4 / 3)πa3 ,  (3.2.24) 

 
where V is the volume of the sphere. In this case, the electric field   


E  is radially 

symmetric and directed outward. The magnitude of the electric field is constant on 
spherical surfaces of radius  r . The regions  r ≤ a  and  r ≥ a  shall be studied separately. 
 
Case 1:  r ≤ a . We choose our Gaussian surface to be a sphere of radius  r ≤ a , as shown 
in Figure 3.2.15(a). 
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      (a) 
 (b) 

 
Figure 3.2.15 Gaussian surface for uniformly charged solid sphere, for (a)  r ≤ a , and (b) 
 r > a . 
 
The flux through the Gaussian surface is 
 

    
ΦE =


E ⋅ d

A

S
∫∫ = EA = E(4πr 2 ) . 

 
With uniform charge distribution, the charge enclosed is 
 

 
  
qenc = ρ dV

V
∫ = ρV = ρ 4

3
πr3⎛

⎝⎜
⎞
⎠⎟
= Q r3

a3

⎛

⎝⎜
⎞

⎠⎟
,  (3.2.25) 

 
which is proportional to the volume enclosed by the Gaussian surface. Applying Gauss’s 
law   ΦE = qenc / ε0 , we obtain 

  
E(4πr 2 ) =

ρ
ε0

4
3
πr3⎛

⎝⎜
⎞
⎠⎟

 

 
The magnitude of the electric field is therefore 
 

 
  
E =

ρr
3ε0

=
Qr

4πε0a
3 , r ≤ a.  (3.2.26) 

 
Case 2:  r ≥ a . In this case, our Gaussian surface is a sphere of radius  r ≥ a , as shown in 
Figure 3.2.15(b). Since the radius of the Gaussian surface is greater than the radius of the 
sphere all the charge is enclosed in our Gaussian surface:   qenc = Q .  With the electric flux 

through the Gaussian surface given by   ΦE = E(4πr 2 ) , upon applying Gauss’s law, we 

obtain   E(4πr 2 ) = Q / ε0 . The magnitude of the electric field is therefore 
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E =

Q
4πε0r

2 = ke

Q
r 2 , r > a.  (3.2.27) 

 
The field outside the sphere is the same as if all the charges were concentrated at the 
center of the sphere. The qualitative behavior of  E  as a function of  r  is plotted in Figure 
3.2.16. 
 

 
 

Figure 3.2.16 Electric field due to a uniformly charged sphere as a function of  r . 
 
3.3 Conductors 
 
An insulator such as glass or paper is a material in which electrons are attached to some 
particular atoms and cannot move freely. On the other hand, inside a conductor, electrons 
are free to move around. The basic properties of a conductor in electrostatic equilibrium 
are as follows. 
 
(1) The electric field is zero inside a conductor. 
 
If we place a solid spherical conductor in a constant external field    E


0 , the positive and 

negative charges will move toward the polar regions of the sphere (the regions on the left 
and right of the sphere in Figure 3.3.1 below), thereby inducing an electric field   


′E . 

Inside the conductor,   

′E  points in the opposite direction of    E


0 . Since charges are mobile, 

they will continue to move until   

′E  completely cancels    E


0  inside the conductor. At 

electrostatic equilibrium,    

Emust vanish inside a conductor. Outside the conductor, the 

electric field   

′E  due to the induced charge distribution corresponds to a dipole field, and 

the total electrostatic field is simply    E

= E


0 +

′E .  The field lines are depicted in Figure 

3.3.1. 
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Figure 3.3.1 Placing a conductor in a uniform electric field    E


0 . 

 
(2) Any net charge must reside on the surface. 
 
If there were a net charge inside the conductor, then by Gauss’s law (Eq. (3.2.5)),   E


 

would no longer be zero there. Therefore, all the net excess charge must flow to the 
surface of the conductor. 
 

 
 

Figure 3.3.2 Gaussian surface inside a 
conductor. The enclosed charge is zero.  

 
Figure 3.3.3 Normal and tangential 
components of electric field outside the 
conductor 

 
(3) The tangential component of   


E  is zero on the surface of a conductor. 

 
We have already seen that for an isolated conductor, the electric field is zero in its 
interior. Any excess charge placed on the conductor must then distribute itself on the 
surface, as implied by Gauss’s law. 
 
Consider the line integral 

   

E ⋅ ds∫ around a closed path shown in Figure 3.3.3. Because 

the electrostatic field   E


 is conservative, the line integral around the closed path abcda 
vanishes: 

    
E

⋅ ds

abcda∫ = Et (Δl) − En(Δx ') + 0(Δl ') + En(Δx) = 0 , 
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where  Et  and  En  are the tangential and the normal components of the electric field, 
respectively, and we have oriented the segment ab so that it is parallel to  Et . In the limit 
where both  Δx  and   Δx '→ 0,we have   EtΔl = 0.  Because the length element Δl is finite, 

we conclude that the tangential component of the electric field on the surface of a 
conductor vanishes: 
   Et = 0 (on the surface of a conductor).  (3.3.1) 
 
(We shall see in Chapter 4 that this property that the tangential component of the electric 
field on the surface is zero implies that the surface of a conductor in electrostatic 
equilibrium is an equipotential surface.) 
 
(4)   E


 is normal to the surface just outside the conductor. 
 
If the tangential component of   E


 is initially non-zero, charges will then move around 

until it vanishes. Hence, only the normal component survives. 
 

 
 

Figure 3.3.3 Gaussian “pillbox” for computing the electric field outside the conductor. 
 
To compute the field strength just outside the conductor, consider the Gaussian pillbox 
drawn in Figure 3.3.3. Using Gauss’s law, we obtain 
 

 
    
ΦE =


E ⋅ d

A

S
∫∫ = En A+ (0)( A) =

σ A
ε0

. (3.3.2) 

 
Therefore the normal component of the electric field is proportional to the surface charge 
density 

 
  
En =

σ
ε0

.  (3.3.3) 
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The above result holds for a conductor of arbitrary shape. The pattern of the electric field 
line directions for the region near a conductor is shown in Figure 3.3.4. 
 

 
 

Figure 3.3.4 Just outside a conductor,   E


is always perpendicular to the surface. 
 
(5) As in the examples of an infinitely large non-conducting plane and a spherical shell, 
the normal component of the electric field exhibits a discontinuity at the boundary: 
 

 
  
ΔEn = En

(+ ) − En
(− ) =

σ
ε0

− 0 =
σ
ε0

.  (3.3.4) 

 
Example 3.5: Conductor with Charge Inside a Cavity 
 
Consider a hollow conductor shown in Figure 3.3.5 below. Suppose the net charge 
carried by the conductor is +Q. In addition, there is a charge q inside the cavity. What is 
the charge on the outer surface of the conductor? 
 

 
 

Figure 3.3.5 Conductor with a cavity 
 
Since the electric field inside a conductor must be zero, the net charge enclosed by the 
Gaussian surface shown in Figure 3.3.5 must be zero. This implies that a charge –q must 
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have been induced on the cavity surface. Since the conductor itself has a charge +Q, the 
amount of charge on the outer surface of the conductor must be   Q + q.  
 
3.4 Force on a Conductor 
 
We have seen that at the boundary surface of a conductor with a uniform charge density 
σ, the tangential component of the electric field is zero, and hence, continuous, while the 
normal component of the electric field exhibits discontinuity, with   ΔEn = σ / ε0 . 
Consider a small patch of charge on a conducting surface, as shown in Figure 3.4.1. 
 

 
 

Figure 3.4.1 Force on a conductor 
 
What is the force experienced by this patch? To answer this question, let’s write the 
electric field anywhere outside the surface as 
 
 

   

E =

Epatch +


′E ,  (3.4.1) 

 
where 

   

Epatch  is the electric field due to the charge on the patch, and   


′E  is the electric field 

due to all other charges. Since by Newton’s third law, the patch cannot exert a force on 
itself, the force on the patch must come solely from   


′E . Assuming the patch to be a flat 

surface, from Gauss’s law, the electric field due to the patch is 
 

 

    


Epatch =

+
σ

2ε0

k̂,       z > 0

−
σ

2ε0

k̂,      z < 0.

⎧

⎨
⎪
⎪

⎩
⎪
⎪

   (3.4.2) 

 
By superposition principle, the electric field above the conducting surface is 
 

 
   


Eabove = σ

2ε0

⎛

⎝⎜
⎞

⎠⎟
k̂ +

′E .  (3.4.3) 

 
Similarly, below the conducting surface, the electric field is 
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
Ebelow = −

σ
2ε0

⎛

⎝⎜
⎞

⎠⎟
k̂ +

′E .  (3.4.4) 

 
The electric field   


′E  is continuous across the boundary. This is due to the fact that if the 

patch were removed, the field in the remaining “hole” exhibits no discontinuity. Using 
the two equations above, we find 

 
   


′E =

1
2


Eabove +


Ebelow( ) =


Eavg . (3.4.5) 

 
In the case of a conductor, with    


Eabove = (σ / ε0 )k̂  and    


Ebelow = 0 , we have 

 

 
   


Eavg =

1
2

σ
ε0

k̂ + 0
⎛

⎝⎜
⎞

⎠⎟
= σ

2ε0

k̂.  (3.4.6) 

 
Thus, the force acting on the patch is 
 

 
    


F = q


Eavg = (σ A)

σ
2ε0

k̂ = σ 2 A
2ε0

k̂,  (3.4.7) 

 
where A is the area of the patch.  This is precisely the force needed to drive the charges 
on the surface of a conductor to an equilibrium state where the electric field just outside 
the conductor takes on the value  σ / ε0  and vanishes inside. Note that irrespective of the 
sign of σ, the force tends to pull the patch into the field. 
 
Using the result obtained above, we may define the electrostatic tension on the patch 
(which for other field configurations is a pressure, see Section 2.11.5) as 
 

 
  
P =

F
A
=
σ 2

2ε0

=
1
2
ε0

σ
ε0

⎛

⎝⎜
⎞

⎠⎟

2

=
1
2
ε0 E2 ,  (3.4.8) 

 
where E is the magnitude of the field just above the patch. The tension is being 
transmitted via the electric field. 
 
 
3.5 Summary 
 

• The electric flux that passes through a surface characterized by the area vector 

    

A = An̂  is 

    ΦE =

E ⋅

A = EAcosθ  
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where θ  is the angle between the electric field   

E  and the unit vector   n̂ . 

 
• In general, the electric flux through a surface is 

 

   
ΦE =


E ⋅ d

A

S
∫∫  

 
• Gauss’s law states that the electric flux through any closed Gaussian surface is 

proportional to the total charge enclosed by the surface: 
 

    
ΦE = E


⋅ d

A

S
∫∫ =

qenc

ε0

. 

 
Gauss’s law can be used to calculate the electric field for a system that possesses 
planar, cylindrical or spherical symmetry. 

 
• The normal component of the electric field exhibits discontinuity, with 

  ΔEn = σ / ε0 , when crossing a boundary with surface charge density σ. 

 
• The basic properties of a conductor are (1) The electric field inside a conductor is 

zero; (2) any net charge must reside on the surface of the conductor; (3) the 
tangential component of the electric field on the surface is zero; (4) just outside 
the conductor, the electric field is normal to the surface; and (5) the discontinuity 
in the normal component of the electric field across the surface of a conductor is 
proportional to the surface charge density. 

 
• Electrostatic tension on a conducting surface is 

 

  
P =

F
A
=
σ 2

2ε0

=
1
2
ε0

σ
ε0

⎛

⎝⎜
⎞

⎠⎟

2

=
1
2
ε0 E2 . 

 
3.6 Problem-Solving Strategies 
In this chapter, we have shown how electric field can be computed using Gauss’s law: 
 

    
ΦE = E


⋅ d

A

S
∫∫ =

qenc

ε0

. 

 
The procedures are outlined in Section 3.2. Below we summarize how the above 
procedures can be employed to compute the electric field for a line of charge, an infinite 
plane of charge and a uniformly charged solid sphere. 
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System Infinite line of 
charge 

Infinite plane of 
charge 

Uniformly charged 
solid sphere 

Figure 
 

  

Identify the 
symmetry Cylindrical Planar Spherical 

Determine the 
direction of   


E  

 
  

Divide the space 
into different 
regions 

  r > 0    z > 0and   z < 0   r ≤ a and   r ≥ a  

Choose Gaussian 
surface 

 
 

Coaxial cylinder 

 

 
 

Gaussian pillbox 
 

 
 

 
Concentric sphere 

 

Calculate electric 
flux   ΦE = E(2πrl)    ΦE = EA+ EA = 2EA    ΦE = E(4πr 2 )  

Calculate enclosed 
charge  qin    qenc = λl    qenc = σ A  

  
qenc =

Q(r / a)3   r ≤ a
Q             r ≥ a
⎧
⎨
⎩⎪

 

Apply Gauss’s law 

  ΦE = qin / ε0  to 
find E   

E =
λ

2πε0r
 

  
E =

σ
2ε0

 

  

E =

Qr
4πε0a

3 ,    r ≤ a

Q
4πε0r

2 ,    r ≥ a

⎧

⎨
⎪
⎪

⎩
⎪
⎪
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3.7 Solved Problems 
 
3.7.1 Two Parallel Infinite Non-Conducting Planes 
 
Two parallel infinite non-conducting planes lying in the  xy -plane are separated by a 
distance d . Each plane is uniformly charged with equal but opposite surface charge 
densities, as shown in Figure 3.7.1. Find the electric field everywhere in space. 
 

 
 

Figure 3.7.1 Positive and negative uniformly charged infinite planes 
 
Solution: The electric field due to the two planes can be found by applying the 
superposition principle to the result obtained in Example 3.2 for one plane. Since the 
planes carry equal but opposite surface charge densities, both fields have equal 
magnitude: 

  
E+ = E− =

σ
2ε0

. 

 
The field of the positive plane points away from the positive plane and the field of the 
negative plane points towards the negative plane (Figure 3.8.2) 
 

 
 

Figure 3.7.2 Electric field of positive and negative planes 
 
Therefore, when we add these fields together, we see that the field outside the parallel 
planes is zero, and the field between the planes has twice the magnitude of the field of 
either plane. 
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Figure 3.7.3 Electric field of two parallel planes 
 
The electric field of the positive and the negative planes are given by 
 

    


E+ =

+
σ

2ε0

k̂, z > d / 2

−
σ

2ε0

k̂, z < d / 2

⎧

⎨
⎪
⎪

⎩
⎪
⎪

,

E− =

−
σ

2ε0

k̂, z > −d / 2

+
σ

2ε0

k̂, z < −d / 2.

⎧

⎨
⎪
⎪

⎩
⎪
⎪

 

 
Adding these two fields together then yields 
 

 

    


E =

0 k̂, z > d / 2

−
σ
ε0

k̂, d / 2 > z > −d / 2

0 k̂, z < −d / 2.

⎧

⎨
⎪
⎪

⎩
⎪
⎪

 (3.7.1) 

 
Note that the magnitude of the electric field between the plates is   E = σ / ε0 , which is 
twice that of a single plate, and vanishes in the regions   z > d / 2  and   z < −d / 2 . 
 
 
3.7.2 Electric Flux Through a Square Surface 
 

(a) Compute the electric flux through a square surface of edges 2l due to a charge +Q 
located at a perpendicular distance l from the center of the square, as shown in 
Figure 3.7.4. 

 
(b) Using the result obtained in (a), if the charge +Q is now at the center of a cube of 

side 2l (Figure 3.7.5), what is the total flux emerging from all the six faces of the 
closed surface? 
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Figure 3.7.4 Electric flux through a 
square surface 
 
 

 
 
Figure 3.7.5 Electric flux through the 
surface of a cube

Solutions: 
 
(a) The electric field due to the charge +Q is 
 

    


E =

1
4πε0

Q
r 2 r̂=

1
4πε0

Q
r 2

xî + yĵ+ zk̂
r

⎛

⎝⎜
⎞

⎠⎟
, 

 
where   r = (x2 + y2 + z2 )1/ 2  in Cartesian coordinates. On the surface S,  y = l  and the area 
element is     d


A = dAĵ = (dx dz )̂j . Because   î ⋅ ĵ = ĵ ⋅ k̂ = 0  and   ĵ ⋅ ĵ = 1 , we have 

 

    


E ⋅ d

A =

Q
4πε0r

2

xî + yĵ+ zk̂
r

⎛

⎝⎜
⎞

⎠⎟
⋅ (dx dz )̂j = Ql

4πε0r
3 dx dz . 

 
Thus, the electric flux through S is 

    

ΦE =

E ⋅ d

A =

S
∫∫

Ql
4πε0

dx
dz

(x2 + l2 + z2 )3/ 2− l

l

∫− l

l

∫ =
Ql

4πε0

dx
−l

l

∫
−l

l

z

(x 2 + l 2 )(x 2 + l 2 + z 2 )1/ 2

=
Ql

2πε0

l dx
(x2 + l2 )(x2 + 2l2 )1/2−l

l

∫ =
Q

2πε0 − l

l

tan
−1 x

x2 + 2l2

⎛

⎝
⎜

⎞

⎠
⎟

=
Q

2πε0

tan−1(1 / 3) − tan−1( −1 / 3)⎡
⎣

⎤
⎦ =

Q
6ε0

,
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where the following integrals have been used: 
 

  

dx
(x2 + a2 )3/2∫ = x

a2(x2 + a2 )1/2

dx
(x2 + a2 )(x2 + b2 )1/2∫ = 1

a(b2 − a2 )1/2 tan−1 x
(b2 − a2 )

a2(x2 + b2 )

⎛

⎝
⎜

⎞

⎠
⎟ , b2 > a2.

 

 
(b) From symmetry arguments, the flux through each face must be the same. Thus, the 
total flux through the cube is just six times that through one face: 
 

  
ΦE = 6

Q
6ε0

⎛

⎝⎜
⎞

⎠⎟
=

Q
ε0

. 

 
The result shows that the electric flux  ΦE  passing through a closed surface is 
proportional to the charge enclosed. In addition, the result further reinforces the notion 
that  ΦE  is independent of the shape of the closed surface. 
 
3.7.3 Gauss’s Law for Gravity 
 
What is the gravitational field inside a spherical shell of radius  a  and mass  m? 
 
Solution: Because the gravitational force is also an inverse square law, there is an 
equivalent Gauss’s law for gravitation: 
 
   

Φg = −4πGmenc .  (3.7.2) 
 
The only changes are that we calculate gravitational flux, the constant   1 / ε0 → −4πG , 
and   qenc → menc . For  r ≤ a , the mass enclosed in a Gaussian surface is zero because the 
mass is all on the shell. Therefore the gravitational flux on the Gaussian surface is zero. 
This means that the gravitational field inside the shell is zero! 
 
3.8 Conceptual Questions 
 
1. If the electric field in some region of space is zero, does it imply that there is no 

electric charge in that region? 
 
2. Consider the electric field due to a non-conducting infinite plane having a uniform 

charge density.  Why is the electric field independent of the distance from the plane?  
Explain in terms of the spacing of the electric field lines. 
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3. If we place a point charge inside a hollow sealed conducting pipe, describe the 
electric field outside the pipe. 

 
4. Consider two isolated spherical conductors each having net charge   Q > 0 . The 

spheres have radii a and b, where  b > a . Which sphere has the higher potential? 
 
3.9 Additional Problems 
 
3.9.1 Non-Conducting Solid Sphere with a Cavity 
 
A sphere of radius 2R is made of a non-conducting material that has a uniform volume 
charge density ρ . (Assume that the material does not affect the electric field.)  A 
spherical cavity of radius R is then carved out from the sphere, as shown in the figure 
below. Compute the electric field within the cavity. 

 
Figure 3.9.1 Non-conducting solid sphere with a cavity 

 
3.9.2 Thin Slab 
 
Let some charge be uniformly distributed throughout the volume of a large planar slab of 
plastic of thickness  d .  The charge density is ρ .  The mid-plane of the slab is the  yz - 
plane. 
(a) What is the electric field at a distance  x  from the mid-plane where   | x |< d 2 ? 
 
(b) What is the electric field at a distance  x  from the mid-plane where   | x |> d 2 ? 
[Hint:  put part of your Gaussian surface where the electric field is zero.] 

   
Figure 3.9.2 Thin solid charged infinite slab 
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3.10 Gauss’s Law Simulation 
 
In this section we explore the meaning of Gauss’s Law using a 3D simulation that creates 
imaginary, moveable Gaussian surfaces in the presence of real, moveable point charges.   
This simulation illustrates Gauss's Law for a spherical or cylindrical imaginary Gaussian 
surface, in the presence of positive (orange) or negative (blue) point charges.  
 
 

    
http://peter-edx.99k.org/GaussLawFlux.html 

 
Figure 3.10.1 Screen Shot of Gauss’s Law Simulation 

You begin with one positive charge and one negative charge in the scene. You can add 
additional positive or negative charges, or delete all charges present and start again. Left 
clicking and dragging on the charge can move the charges.  You can choose whether your 
imaginary closed Gaussian surface is a cylinder or a sphere, and you can move that 
surface. You will see normals to the Gaussian surface (gray arrows) at many points on the 
surface. At those same points you will see the local electric field (yellow vectors) at that 
point on the surface due to all the charges in the scene.  If you left click and drag in the 
view, your perspective will change so that you can see the field vector and normal 
orientation better. If you want to return to the original view you can "Reset Camera.” 

Use the simulation to verify the following properties of Gauss Law.  For the closed 
surface, you may choose either a Gaussian cylinder or a Gaussian sphere.  
   

(1)  If charges are placed outside a Gaussian surface, the total electric flux through 
that closed surface is zero.  
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(2)  If a charge is placed inside a Gaussian surface, the total electric flux through that 
closed surface is positive or negative depending on the sign of the charge 
enclosed.  

  
(3)  If more than one charge is inside the Gaussian surface, the total electric flux 

through that closed surface depends on the number and sign of the charges 
enclosed.  
 

Then use the simulation to answer the two following questions.  Consider two charged 
objects. Place one of the charged objects inside your closed Gaussian surface and the 
other outside. 
 

(1) Is the electric field on the closed surface due only to the charged objects that are 
inside that surface?  

 
(2) Is the electric flux on a given part of the Gaussian surface due only to the charged 

objects that are inside that surface? 
 

(3) Is the total electric flux through the entire Gaussian surface due only to the 
charged objects that are inside that surface? 

 
 
 
 
 
 
 

 
 
 
 
 
 




