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Coulomb’s Law 
 

2.1 Electric Charge 
 
There are two types of observed electric charge, which we designate as positive and 
negative.  The convention was derived from Benjamin Franklin’s experiments. He rubbed 
a glass rod with silk and called the charges on the glass rod positive. He rubbed sealing 
wax with fur and called the charge on the sealing wax negative.  Like charges repel and 
opposite charges attract each other. The unit of charge is called the Coulomb (C).   
 
The smallest unit of “free” charge known in nature is the charge of an electron or proton, 
which has a magnitude of   

 
 e = 1.602 ×10−19 C . (2.1.1) 
 
Charge of any ordinary matter is quantized in integral multiples of  e . An electron carries 
one unit of negative charge,  −e , while a proton carries one unit of positive charge, e+ . In 
a closed system, the total amount of charge is conserved since charge can neither be 
created nor destroyed. A charge can, however, be transferred from one body to another.  
 
 
2.2 Coulomb's Law  
 
In this section we will simply state Coulomb’s Law.  This is the path followed by almost 
all introductory textbooks.  But you will get a much better understanding of this law at an 
intuitive level in reading Section 2.11 below, where we explain how Faraday thought of 
this law, in terms of his lines of force (see also Section 1.1).   
 
Consider a system of two point-like objects with charges,   q1  and   q2 , separated by a 
distance  r  in vacuum. The electric force exerted by   q1  on   q2  is given by Coulomb's law, 

 

 
    


F12 = ke

q1q2

r 2 r̂ , (2.2.1) 

  
where  ke  is the Coulomb constant, and     ̂r = r / r  is a unit vector directed from   q1  to   q2  as 
illustrated in Figure 2.2.1(a). Similarly, the force on   q1  due to   q2  is given by    


F12 = −


F21 , 

as illustrated in Figure 2.2.1(b). This is consistent with Newton's third law. 
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(a) (b) 
 

Figure 2.2.1 Coulomb interaction between two charges 
 
Note that electric force is a vector that has both magnitude and direction. In SI units, the 
Coulomb constant  ke  is given by 
 

 9 2 2

0

1 8.9875 10 N m /C
4ek πε

= = × ⋅ , (2.2.2) 

 
where   ε0  is the electric constant called the permittivity of free space. The value of  ε0  is 
exactly equal to  

 
  
ε0 =

1
µ0c

2 , (2.2.3) 

 
where the constant  µ0 = 4π ×10−9 N ⋅ s2 ⋅C-2  is called the permeability of free space, and 

  c = 299792458 m ⋅s-1  is the speed of light. Therefore  
 

 

  

ε0 =
1

µ0c
2 = 1

(4π ×10−9 N ⋅s2 ⋅C-2 )(299792458 m ⋅s-1)2

= 8.854187817...×10−12 C2 / N ⋅m2 .
 (2.2.4) 

 
Before the speed of light was exactly defined to be   c = 299792458 m ⋅s-1 , the value of  ε0  
depended on the experimentally measured value of the speed of light. Now both  ε0  and 

 µ0  are defined exactly.  
 
2.3  Principle of Superposition 
 
Coulomb’s law applies to any pair of point charges. When more than two charges are 
present, the net force on any one charge is simply the vector sum of the forces exerted on 
it by the other charges. For example, if three charges are present, the resultant force 
experienced by   q3  due to   q1  and   q2  will be 
 
 3 13 23= +F F F

  
. (2.3.1) 
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The superposition principle is illustrated in the example below.  
 
Example 2.1: Three Charges 
 
Three charges are arranged as shown in Figure 2.3.1. Find the force on the charge 

  q3 assuming that   q1 = 6.0 ×10−6 C ,   q2 = −q1 = −6.0 ×10−6 C ,   q3 = 3.0 ×10−6 C  and 

  a = 2.0 ×10−2 m . 

 
 

Figure 2.3.1 A system of three charges 
 
Solution:  Using the superposition principle, the force on   q3  is 
 

 1 3 2 3
3 13 23 13 232 2

0 13 23

1 ˆ ˆ
4

q q q q
r rπε

⎛ ⎞
= + = +⎜ ⎟

⎝ ⎠
F F F r r
  

.  

 
In this case the second term will have a negative coefficient, since   q2  is negative.  The 
unit vectors   ̂r13  and   ̂r23  do not point in the same directions. In order to compute this sum, 
we can express each unit vector in terms of its Cartesian components and add the forces 
according to the principle of vector addition.  
 
From the figure, we see that the unit vector   ̂r13  which points from   q1  to   q3  can be written 
as 

13
2ˆ ˆ ˆ ˆˆ cos sin ( )
2

= + = +r i j i jθ θ . 

 
Similarly, the unit vector   ̂r23 = î  points from   q2  to   q3 . Therefore upon adding the 
components, the total force is 
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
F3 =

1
4πε0

q1q3

r13
2 r̂13 +

q2q3

r23
2 r̂23

⎛

⎝
⎜

⎞

⎠
⎟ =

1
4πε0

q1q3

( 2a)2

2
2

( î + ĵ) +
(−q1)q3

a2 î
⎛

⎝
⎜

⎞

⎠
⎟

=
1

4πε0

q1q3

a2

2
4

−1
⎛

⎝
⎜

⎞

⎠
⎟ î + 2

4
ĵ

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
.

  

 
The magnitude of the total force is given by 
 

 

  

F3 =
1

4πε0

q1q3

a2

2
4

−1
⎛

⎝
⎜

⎞

⎠
⎟

2

+ 2
4

⎛

⎝
⎜

⎞

⎠
⎟

2⎡

⎣

⎢
⎢

⎤

⎦

⎥
⎥

1 2

= (9.0×109 N ⋅m2 / C2 ) (6.0×10−6C)(3.0×10−6C)
(2.0×10−2 m)2 (0.74) = 3.0×102 N.

  

 
The angle that the force makes with the positive  x -axis is 
 

 3,1 1

3,

2 / 4tan tan 151.3
1 2 / 4

y

x

F
F

φ − −⎛ ⎞ ⎡ ⎤
= = = °⎜ ⎟ ⎢ ⎥⎜ ⎟ − +⎣ ⎦⎝ ⎠

.  

 
Note there are two solutions to this equation. The second solution   φ = 28.7  is incorrect 
because it would indicate that the force has positive   ̂i - and negative   ĵ -components. 
 
For a system of  N  charges, the net force experienced by the j th particle would be 
 

 
1

N

j ij
i
i j
=
≠

=∑F F
 

, (2.3.2) 

where 
   

Fij  denotes the force between particles  i  and j . The superposition principle 

implies that the net force between any two charges is independent of the presence of 
other charges.  This is true if the charges are in fixed positions. 
 
 
2.4 Electric Field  
 
The electrostatic force, like the gravitational force, is a force that acts at a distance, even 
when the objects are not in contact with one another. To justify such a notion we 
rationalize action at a distance by saying that one charge creates a field that in turn acts 
on the other charge.  
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An electric charge  q  produces an electric field everywhere.  To quantify the strength of 
the field created by that charge, we can measure the force a positive “test charge”   q0  

experiences at some point.  The electric field E


 is defined as:  
 

 
0 0

0

lim e
q q→

FE =



. (2.4.1) 

 
We take   q0  to be infinitesimally small so that the field   q0  generates does not disturb the 
“source charges.” The analogy between the electric field and the gravitational field 

    
g = lim

m0 →0


Fm / m0  is depicted in Figure 2.4.1. 

 

  
 

Figure 2.4.1 Analogy between the gravitational field g  and the electric field E


. 
 
From the field theory point of view, we say that the charge  q  creates an electric field   


E  

that exerts a force     

Fe = q0


E  on a test charge   q0 . 

 
Using the definition of electric field given in Eq. (2.4.1) and the Coulomb’s law, the 
electric field at a distance  r  from a point charge  q  is given by 
 

 2
0

1 ˆ
4

q
rπε

=E r


. (2.4.2) 

 
Using the superposition principle, the total electric field due to a group of charges is 
equal to the vector sum of the electric fields of individual charges: 
 

 2
0

1 ˆ
4

i
i

i i i

q
rπε

= =∑ ∑E E r
 

. (2.4.3) 

 
 
2.4.1 Electric Field of Point Charges  
 
Figure 2.4.2 shows one frame of movies of the electric field of a moving positive and a 
moving negative point charge, assuming the speed of the charge is small compared to the 
speed of light.   
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    (a)   link1             (b)  link2 
Figure 2.4.2 The electric fields of (a) a moving positive charge,  (b) a moving negative 
charge,  when the speed of the charge is small compared to the speed of light. 
 
 
2.5 Electric Field Lines 
 
Electric field lines provide a convenient graphical representation of the electric field in 
space. The field lines for a stationary positive and a stationary negative charge are shown 
in Figure 2.5.1. 
 

(a) (b) 
 

Figure 2.5.1 Field lines for (a) positive and (b) negative charges. 
 

Notice that the direction of field lines is radially outward for a positive charge and 
radially inward for a negative charge. For a pair of charges of equal magnitude but 
opposite sign (an electric dipole), the field lines are shown in Figure 2.5.2. 
 

 
 

Figure 2.5.2 Field lines for a finite electric dipole. 

https://youtu.be/RDK5AczWVSE
https://youtu.be/dEOyvbS7t3s
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The pattern of electric field lines can be obtained by considering the following. 
 

(1) Symmetry: for every point above the line joining the two charges there is an 
equivalent point below it. Therefore, the pattern must be symmetrical about the line 
joining the two charges. 

 
(2) Near field: very close to a charge, the field due to that charge predominates. 
Therefore, the lines are radial and spherically symmetric. 
 
(3) Far field: far from the system of charges, the pattern should look like that of a single 
point charge of value 

 
Q = Qii∑ . Thus, the lines should be radially inward or outward, 

unless   Q = 0 . 
 
(4) Null point: This is a point at which   


E =

0 , and no field lines should pass through it. 

 
The properties of electric field lines may be summarized as follows: 
 
• The direction of the electric field vector E


 at a point is tangent to the field lines. 

 
• The field lines must begin on positive charges (or at infinity) and then terminate on 

negative charges (or at infinity). 
 
• The number of lines that originate from a positive charge or terminating on a negative 

charge must be proportional to the magnitude of the charge. 
 
• No two field lines can cross each other; otherwise the field would be pointing in two 

different directions at the same point.  
 
 
2.6 Force on a Charged Particle in an Electric Field 
 
Consider a charge  +q  moving between two parallel plates of opposite charges, as shown 
in Figure 2.6.1. 
 

 
 

Figure 2.6.1 Charge moving in a constant electric field 
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Let the electric field between the plates be 
    

E = −Ey ĵ , with 0yE > . (In Chapter 4, we 

shall show that the electric field in the region between two infinitely large plates of 
opposite charges is uniform.) The charge will experience a downward Coulomb force 

 
 e q=F E

 
. (2.6.1) 

 
Note the distinction between the charge  q  that is experiencing a force and the charges on 
the plates that are the sources of the electric field.  Even though the charge  q  is also a 
source of an electric field, by Newton’s third law, the charge cannot exert a force on 
itself. In Figure 2.6.1 we draw only the electric field lines E


 due to the “source” charges.  

This is the standard way the electric field is drawn in this situation in most introductory 
textbooks (that is, we draw only the field lines of the source charges).  That allows us to 
write down the correct force, since the electric field of the charge experiencing the force 
does not exert a force on the charge producing it, at least in a static situation, so one 
might argue that there is no reason to show the total field.  However, if we draw the field 
this way, limiting ourselves to only the source field lines and not the total field lines, we 
cannot understand the manner in which electric fields transmit forces, following Faraday, 
as discussed in Section 1.1.  To use Faraday’s powerful insight, we must draw the total 
electric field, and we do this and discuss the meaning in Section 2.11.2 below.   
 
In any case, according to Newton’s second law, this net force will cause the charge to 
accelerate with an acceleration given by 
 

 ˆye qEq
m m m

= = = −F Ea j
 

 . (2.6.2) 

  
Suppose the particle is at rest (  v0 = 0 ) when it is first released from the positive plate. 
The final speed  v  of the particle as it strikes the negative plate is 
 

 
2

2 | | y
y y

yqE
v a y

m
= = , (2.6.3)   

 
where  y  is the distance between the two plates. The kinetic energy of the particle when it 
strikes the plate is  

 21
2 y yK mv qE y= = . (2.6.4)  

 
You might ask where the kinetic energy of the accelerating charge is coming from, and 
also its momentum.  As we discuss in more detail below, in Section 2.11.2, the kinetic 
energy going into the charge is coming out of the electric energy stored in the total field 
at the beginning of this configuration, so that total energy, kinetic plus field energy, is 
conserved.  The momentum of the charge, however, is coming from the momentum of 
the source charges.  That is, the downward momentum gained by the accelerating charge 
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is offset by an upward momentum gained by the source charges, so that total momentum 
is conserved, but in a different manner (field momentum is not involved).   
  
2.7 Electric Dipole 
 
An electric dipole consists of two equal but opposite charges, q+  and q− , separated by a 
distance   2a , as shown in Figure 2.7.1. 
 

 
 

Figure 2.7.1 Electric dipole 
 
By definition, the dipole moment vector p  points from  −q  to q+  (in the y+ - direction) 
and has magnitude   p = 2qa , where   q > 0 ,  
 
 ˆ2qa=p j . (2.7.1)  
 
For an overall charge-neutral system having  N  charges, the electric dipole vector   

p  is 
defined as 

 
1

i N

i
i
q

=

=

≡∑ ip r   (2.7.2) 

 
where    

ri  is the position vector of the charge  qi . Examples of dipoles include HCL, CO, 
H2O and other polar molecules. In principle, any molecule in which the centers of the 
positive and negative charges do not coincide may be approximated as a dipole. In 
Chapter 5 we shall also show that by applying an external field, an electric dipole 
moment may also be induced in an unpolarized molecule. 
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2.7.1 The Electric Field of a Dipole 
 
What is the electric field due to the electric dipole? Referring to Figure 2.7.1, we see that 
the  x -component of the electric field strength at the point  P  is 
  

 3/ 2 3/ 22 2 2 2 2 2
0 0

cos cos
4 4 ( ) ( )

x
q q x x

E
r r x y a x y a

θ θ
πε πε

+ −

+ −

⎛ ⎞⎛ ⎞ ⎜ ⎟= − = −⎜ ⎟ ⎜ ⎟⎡ ⎤ ⎡ ⎤⎝ ⎠ + − + +⎣ ⎦ ⎣ ⎦⎝ ⎠
, (2.7.3) 

where  
 2 2 2 2 22 cos ( )r r a ra x y aθ± = + = +  . (2.7.4) 
 
Similarly, the y -component is 

  

 3/ 2 3/ 22 2 2 2 2 2
0 0

sin sin
4 4 ( ) ( )

y
q q y a y a

E
r r x y a x y a

θ θ
πε πε

+ −

+ −

⎛ ⎞⎛ ⎞ − +⎜ ⎟= − = −⎜ ⎟ ⎜ ⎟⎡ ⎤ ⎡ ⎤⎝ ⎠ + − + +⎣ ⎦ ⎣ ⎦⎝ ⎠
. (2.7.5) 

 
In the “point-dipole” limit where   r  a , one may verify that (see Solved Problem 2.13.4) 
the above expressions reduce to  

 3
0

3
sin cos

4x
p

E
r

θ θ
πε

=  (2.7.6) 

and 

 
  
Ey =

p
4πε0r

3
(3cos2θ − 1) , (2.7.7) 

 
where sin /x rθ =  and cos /y rθ = . With 3 cos 3pr θ = ⋅p r  and some algebra, the 
electric field may be written as  
 

 3 5
0

1 3( )( )
4 r rπε

⋅⎛ ⎞= − +⎜ ⎟⎝ ⎠
p p r rE r
     . (2.7.8) 

 
Note that Eq. (2.7.8) is valid also in three dimensions where     

r = xî + yĵ + zk̂ . The 
equation indicates that the electric field E


 due to a dipole decreases with r  as 31/ r , 

unlike the 21/ r  behavior for a point charge. This is to be expected since the net charge of 
a dipole is zero and therefore must fall off more rapidly than 21/ r  at large distance. The 
electric field lines due to a finite electric dipole and a point dipole are shown in Figure 
2.7.2.   
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 Figure 2.7.2 Electric field lines for (a) a finite dipole and (b) a point dipole.  
 
 
2.8  Dipole in Electric Field 
 
What happens when we place an electric dipole in a uniform field ˆE=E i


, with the 

dipole moment vector   
p  making an angle with the  x -axis?  

 

 
 
Figure 2.8.1 Electric dipole placed in a uniform field. 

 
From Figure 2.8.1, we see that the unit vector that points in the direction of p  is 

ˆ ˆcos sinθ θ+i j . Thus, we have   
 ˆ ˆ2 (cos sin )qa θ θ= +p i j . (2.8.1) 
As seen from Figure 2.8.1, because each charge experiences an equal but opposite force 
due to the field, the net force on the dipole is net 0+ −= + =F F F

  
. Even though the net force 

vanishes, the field exerts a torque a toque on the dipole. The torque about the mid-point  
of the dipole is  

 

 

    


τ = r+ ×


F+ +
r− ×

F− = (acosθ î + asinθ ĵ) × (F+ î) + (−acosθ î − asinθ ĵ) × (−F− î)

= asinθ F+ (−k̂) + asinθ F− (−k̂)

= 2aF sinθ(−k̂),

 (2.8.2) 
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where we have used F F F+ −= = . The direction of the torque is ˆ−k , or into the page. 
The effect of the torque   


τO  is to rotate the dipole clockwise so that the dipole moment   

p  

becomes aligned with the electric field E


. With F qE= , the magnitude of the torque can 
be rewritten as  

2 ( )sin (2 ) sin sina qE aq E pEτ θ θ θ= = = , 
 

and the general expression for torque becomes 
 
   


τ = p ×


E . (2.8.3) 

 
Thus, we see that the cross product of the dipole moment with the electric field is equal to 
the torque.   
 
 
2.8.1 Potential Energy of an Electric Dipole 
 
The work done by the electric field to rotate the dipole by an angle dθ is 
 
 sindW d pE dτ θ θ θ= − = − . (2.8.4) 
 
The negative sign indicates that the torque opposes any increase in θ . Therefore, the total 
amount of work done by the electric field to rotate the dipole from an angle  θ0  to θ  is 

 

 
  
W = (− pE sinθ)dθ

θ0

θ

∫ = pE(cosθ − cosθ0 ) . (2.8.5)  

  
The result shows that a positive work is done by the field when  cosθ > cosθ0 . The 
change in potential energy UΔ  of the dipole is the negative of the work done by the 
field: 
   ΔU =U −U0 = −W = − pE(cosθ − cosθ0 ) , (2.8.6) 
 
We shall choose our zero point for the potential energy when the angle between the 
dipole moment and the electric field is  π / 2 ,   U (θ = π / 2) = 0 . Then, when the dipole 
moment is at an angle θ  with respect to the direction of the external electric field, we 
define the potential energy function by  
 
     U (θ) = − pE cosθ = −p ⋅


E, where U (π / 2) = 0 . (2.8.7) 

 
A system is at a stable equilibrium when its potential energy is a minimum. This takes 
place when the dipole p  is aligned parallel to E


, making  U  a minimum with 

minU pE= − . On the other hand, when p  and E


 are anti-parallel, maxU pE= +  is a 
maximum and the system is unstable.  
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If the dipole is placed in a non-uniform field, there would be a net force on the dipole in 
addition to the torque, and the resulting motion would be a combination of linear 
acceleration and rotation. In Figure 2.8.2, suppose the electric field +E


at q+  differs from 

the electric field −E


 at q− .  
 

 
 

Figure 2.8.2 Force on a dipole 
 
Assuming the dipole to be very small, we expand the fields about x : 
 

 ( ) ( ) , ( ) ( )dE dE
E x a E x a E x a E x a

dx dx+ −
⎛ ⎞ ⎛ ⎞+ ≈ + − ≈ −⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠

. (2.8.8) 

  
The force on the dipole then becomes 
 

 ˆ ˆ( ) 2e
dE dE

q qa p
dx dx+ −

⎛ ⎞ ⎛ ⎞= − = =⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠
F E E i i
  

. (2.8.9) 

 
The attraction between small pieces of paper and a comb, which has been charged by 
rubbing through hair, is an example of non-uniform electric field exerting a force on an 
electric dipole. The paper has induced dipole moments (to be discussed in depth in 
Chapter 5) while the field on the comb is non-uniform due to its irregular shape (Figure 
2.8.3). 

 
Figure 2.8.3 Electrostatic attraction between a piece of paper and a comb 

 
 
2.9  Charge Density 
 
The electric field due to a small number of charged particles can readily be computed 
using the superposition principle. But what happens if we have a very large number of 
charges distributed in some region in space? Let’s consider the system shown in Figure 
2.9.1: 
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Figure 2.9.1 Electric field due to a small charge element iqΔ . 
  
2.9.1  Volume Charge Density                                                   

 
Suppose we wish to find the electric field at some point  P . Let’s consider a small 
volume element  ΔVi  that contains an amount of charge  Δqi . The distances between 
charges within the volume element iVΔ  are much smaller than compared to  r , the 
distance between iVΔ  and  P . In the limit where iVΔ  becomes infinitesimally small, we 
may define a volume charge density    ρ(r)  as  

 

 
0

( ) lim
i

i
V

i

q dq
V dV

ρ
Δ →

Δ= =
Δ

r . (2.9.1) 

 
The dimension of ( )ρ r  is charge/unit volume 3(C/m )  in SI units. The total amount of 
charge within the entire volume V  is  
 
 ( )i

i V

Q q dVρ= Δ =∑ ∫ r . (2.9.2) 

 
The concept of charge density here is analogous to mass density     ρm(r) . When a large 
number of atoms are tightly packed within a volume, we can also take the continuum 
limit and the mass of an object is given by 
 
 ( )m

V

M dVρ= ∫ r . (2.9.3) 

  
2.9.2 Surface Charge Density 
 
In a similar manner, the charge can be distributed over a surface  S  of area  A  with a 
surface charge density σ   (lowercase Greek letter sigma): 

 

 
    
σ (r) =

dq
dA

. (2.9.4) 
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The dimension of σ  is charge/unit area 2(C/m )  in SI units. The total charge on the entire 
surface is: 
 ( )

S

Q dAσ= ∫∫ r . (2.9.5) 

 
2.9.3 Line Charge Density 
 
If the charge is distributed over a line of length   , then the linear charge density λ   
(lowercase Greek letter lambda) is 

 ( ) dq
d

λ =r


 (2.9.6) 

 
where the dimension of λ  is charge/unit length  (C/m) . The total charge is now an 
integral over the entire length: 
 

line

( )Q dλ= ∫ r  . (2.9.7) 

 
If charges are uniformly distributed throughout the region, the densities  (ρ,σ  or λ)  then 
become uniform.   
 
 
2.10 Electric Fields due to Continuous Charge Distributions 
 
The electric field at a point  P  due to each charge element  dq  is given by Coulomb’s 
law, 

 
0

1 ˆ
4 2

dqd
rπε

=E r


, (2.10.1) 

 
where  r  is the distance from  dq  to  P  and   ̂r  is the corresponding unit vector. (See 
Figure 2.9.1). Using the superposition principle, the total electric field E


is the vector 

sum (integral) of all these infinitesimal contributions: 
 

 2
0

1 ˆ
4 V

dq
rπε

= ∫E r


. (2.10.2) 

 
This is an example of a vector integral that consists of three separate integrations, one for 
each component of the electric field.   
 
 
Example 2.2: Electric Field on the Axis of a Rod  
 
A non-conducting rod of length   with a uniform positive charge density λ  and a total 
charge  Q is lying along the  x -axis, as illustrated in Figure 2.10.1. 
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Figure 2.10.1 Electric field of a wire along the axis of the wire 
 
Calculate the electric field at a point  P  located along the axis of the rod and a distance 

  x0  from one end.  
 
Solution: The linear charge density is uniform and is given by    λ = Q /  . The amount of 
charge contained in a small segment of length  d ′x  is dq dxλ ′= .  
 
The source carries a positive charge  Q , the field at  P  points in the negative  x - direction, 
and   ̂r = − î  is the unit vector that points from the source to  P . Therefore the contribution 
to the electric field due to  dq  is 
 

 2
0 0 0

1 1 1ˆ ˆˆ ( )
4 4 42 2

dq dx Qdx
d

r x x
λ

πε πε πε
′ ′

= = − = −
′ ′

E r i i



.  

 
Integrating over the entire length leads to 
 

 0

0
2

0 0 0 0 0 0 0

1 1 1 1 1ˆ ˆ ˆ
4 4 4 ( )

x

x

Q dx Q Q
d

x x x x xπε πε πε
+ ⎛ ⎞′

= = − = − − = −⎜ ⎟′ + +⎝ ⎠
∫ ∫E E i i i

 

   
. (2.10.3)  

 
Notice that when  P  is very far away from the rod,    x0   , and the above expression 
becomes  

 2
0 0

1 ˆ
4

Q
xπε

≈ −E i


. (2.10.4) 

 
The result is to be expected since at sufficiently far distance away, the distinction 
between a continuous charge distribution and a point charge diminishes. 
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Example 2.3 Electric Field on the Perpendicular Bisector  
 
A non-conducting rod of length    with a uniform charge density λ  and a total charge  Q  
is lying along the  x -axis, as illustrated in Figure 2.10.2. Compute the electric field at a 
point  P , located at a distance  y  from the center of the rod along its perpendicular 
bisector. 

 
 

Figure 2.10.2 
 
Solution: We follow a similar procedure as that outlined in Example 2.2. The 
contribution to the electric field from a small length element  d ′x  carrying charge 
 dq = λ d ′x  

 2 2 2
0 0

1 1
4 4

dq dx
dE

r x y
λ

πε πε
′

= =
′ ′ +

. (2.10.5) 

 
Using symmetry argument illustrated in Figure 2.10.3, one may show that the  x -
component of the electric field vanishes.  
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Figure 2.10.3 Symmetry argument showing that 0xE = . 
 

The  y -component of dE is  
 

 2 2 2 2 3/ 22 2
0 0

1 1
cos

4 4 ( )y
dx y y dx

dE dE
x y x yx y

λ λθ
πε πε

′ ′
= = =

′ ′+ +′ +
. (2.10.6) 

 
By integrating over the entire length, the  y -component of the electric field due to the rod 
is 

 
/ 2 / 2

2 2 3/ 2 2 2 3/ 2/ 2 / 2
0 0

1
4 ( ) 4 ( )y y

ydx y dx
E dE

x y x y
λ λ

πε πε− −

′ ′
= = =

′ ′+ +∫ ∫ ∫
 

 
. (2.10.7) 

 
By making the change of variable: tanx y θ′ ′= , which gives   d ′x = y sec2 ′θ d ′θ , the 
above integral becomes 
 

   

d ′x
( ′x 2 + y2 )3/2−/2

/2

∫ = ysec2 ′θ d ′θ
y3(tan2 ′θ +1)3/2−θ

θ

∫ = 1
y2

sec2 ′θ d ′θ
(tan2 ′θ +1)3/2−θ

θ

∫ = 1
y2

sec2 ′θ d ′θ
sec ′θ 3−θ

θ

∫

= 1
y2

d ′θ
sec ′θ−θ

θ

∫ = 1
y2 cos ′θ d ′θ

−θ

θ

∫ = 2sinθ
y2 .

 (2.10.8) 

 
Thus the  y -component of the electric field is 
 

 
2 2

0 0

1 2 sin 1 2 / 2
4 4 ( / 2)

yE y y y
λ θ λ

πε πε
= =

+



. (2.10.9) 

 
In the limit where   y   , the above expression reduces to the “point-charge” limit: 
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 2 2
0 0 0

1 2 / 2 1 1
4 4 4y

QE
y y y y
λ λ

πε πε πε
≈ = =  . (2.10.10) 

 
On the other hand, when y  , we have  
 

 
0

1 2
4yE y

λ
πε

≈ . (2.10.11) 

 
In this infinite length limit, the system has cylindrical symmetry. In this case, an 
alternative approach based on Gauss’s law can be used to obtain Eq. (2.10.11), as we 
shall show in Chapter 4. The characteristic behavior of   

Ey / E0  (with 2
0 0/ 4E Q πε=  ) as 

a function of /y   is shown in Figure 2.10.4. 
 

 
Figure 2.10.4 Electric field of a non-conducting rod as a function of /y  . 

 
 
Example 2.4: Electric Field on the Axis of a Ring  
 
A non-conducting ring of radius  R  with a uniform charge density λ  and a total charge 
 Q  is lying in the  xy - plane, as shown in Figure 2.10.5. Compute the electric field at a 
point  P , located at a distance z from the center of the ring along its axis of symmetry. 
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Figure 2.10.5 Electric field at  P  due to the charge element  dq . 
 
Solution: 
 
Consider a small length element   d ′  on the ring.  
 

 
Figure 2.10.6  

 
The amount of charge contained within this element is   dq = λ d ′ = λR d ′φ . Its 
contribution to the electric field at  P  is  
 

 2 2
0 0

1 1ˆ ˆ
4 4

dq Rdd
r r

λ φ
πε πε

′
= =E r r


. (2.10.12) 

 
Using the symmetry argument illustrated in Figure 2.10.6, we see that the electric field at 
 P  must point in the z+ -direction. The  z -component of the electric field is given by 
 
 

 2 2 2 2 3/ 22 2
0 0

1
cos

4 4 ( )z
R d z Rz ddE dE
R z R zR z
λ φ λ φθ

πε πε
′ ′

= = =
+ ++

. (2.10.13) 
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Upon integrating over the entire ring, we obtain 
 

 
  
Ez =

λ
4πε0

Rz
(R2 + z2 )3/ 2 d ′φ

0

2π

∫ = λ
4πε0

2πRz
(R2 + z2 )3/ 2 = 1

4πε0

Qz
(R2 + z2 )3/ 2 , (2.10.14) 

 
where the total charge is (2 )Q Rλ π= . A plot of the electric field as a function of z  is 
given in Figure 2.10.7. 
 

 
 

Figure 2.10.7 Electric field along the axis of symmetry of a non-conducting ring of 
radius  R , with 2

0 0/ 4E Q Rπε= . 
 
Notice that the electric field at the center of the ring vanishes. This is to be expected from 
symmetry arguments. 
 
 
 
Example 2.5: Electric Field Due to a Uniformly Charged Disk 
 
A uniformly charged disk of radius  R  with a total charge  Q  lies in the  xy -plane. Find 
the electric field at a point  P , along the  z -axis that passes through the center of the disk 
perpendicular to its plane. What are the limits when  z >> R  and when  R >> z ? 
 
Solution: By treating the disk as a set of concentric uniformly charged rings, the problem 
could be solved by using the result obtained in Example 2.4. Consider a ring of radius  ′r  
and thickness dr′ , as shown in Figure 2.10.8. 
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Figure 2.10.8 A uniformly charged disk of radius  R . 
 
By symmetry arguments, the electric field at  P  points in the z+ -direction. Since the ring 
has a charge (2 )dq r drσ π ′ ′= , from Eq. (2.10.14), we see that the ring gives a 
contribution to the  z -component of the electric field  
 

 2 2 3/ 2 2 2 3/ 2
0 0

1 1 (2 )
4 ( ) 4 ( )z

z dq z r drdE
r z r z

πσ
πε πε

′ ′
= =

′ ′+ +
. (2.10.15) 

 
Integrating from 0r′ =  to r R′ = , the  z -component of the electric field at  P  becomes 
 

 

  

Ez = dEz∫ = σ z
2ε0

′r d ′r
( ′r 2 + z2 )3/ 20

R

∫ = σ z
4ε0

du
u3/ 2z2

R2 + z2

∫ = σ z
4ε0

u−1/ 2

(−1 / 2)
R2 + z2

z2

= − σ z
2ε0

1

R2 + z2
− 1

z2

⎡

⎣
⎢

⎤

⎦
⎥ =

σ
2ε0

z
| z |

− z
R2 + z2

⎡

⎣
⎢

⎤

⎦
⎥.

 (2.10.16) 

 
The above equation may be rewritten as 
 

 
2 2

0

2 2
0

1 , 0
2

1 , 0
2

z

z z
z R

E
z z

z R

σ
ε

σ
ε

⎧ ⎡ ⎤
− >⎪ ⎢ ⎥

+⎪ ⎣ ⎦= ⎨
⎡ ⎤⎪ − − <⎢ ⎥⎪ +⎣ ⎦⎩

. (2.10.17) 

 
The plot of 0/zE E  as a function of /z R  is shown in Figure 2.10.9, where 0 0/ 2E σ ε= . 
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Figure 2.10.9 Electric field of a non-conducting plane of uniform charge density. 
 
To show that the “point-charge” limit is recovered for  z >> R , we make use of the 
Taylor-series expansion: 
 

 
1/ 22 2 2

2 2 22 2

1 11 1 1 1 1
2 2

z R R R
z z zz R

−
⎛ ⎞ ⎛ ⎞

− = − + = − − + ≈⎜ ⎟ ⎜ ⎟
+ ⎝ ⎠ ⎝ ⎠

 . (2.10.18) 

 
The  z -component of the electric field is then 
 

 
2 2

2 2 2
0 0 0

1 1
2 2 4 4z

R R QE
z z z

σ σπ
ε πε πε

= = = , (2.10.19) 

 
which is indeed the expected “point-charge” result. On the other hand, we may also 
consider the limit where  R >> z . Physically this means that the plane is very large, or the 
field point  P  is extremely close to the surface of the plane. The electric field in this limit 
becomes, in unit-vector notation, 
 

 0

0

ˆ , 0
2

ˆ , 0
2

z

z

σ
ε
σ
ε

⎧ >⎪⎪= ⎨
⎪− <
⎪⎩

k
E

k


. (2.10.20) 

 
The plot of the electric field in this limit is shown in Figure 2.10.10. 
 



 
 

2-26 

 
 

Figure 2.10.10 Electric field of an infinitely large non-conducting plane. 
 
Notice the discontinuity in electric field as we cross the plane. The discontinuity is given 
by 

 
0 0 02 2z z zE E E σ σ σ

ε ε ε+ −

⎛ ⎞
Δ = − = − − =⎜ ⎟

⎝ ⎠
. (2.10.21) 

 
As we shall see in Chapter 4, if a given surface has a charge density σ , then the normal 
component of the electric field across that surface always exhibits a discontinuity with 

0/nE σ εΔ = .  
 
2.11   Rubber Bands and Strings and the Forces Transmitted by Electric Fields  
 
We now return to our considerations in Section 1.1.2, where we asserted that depictions 
of the total field, that is the field due to all objects being considered, allows profound 
insight into the mechanisms whereby fields transmit forces. The stresses transmitted by 
electromagnetic fields can be understood as analogous to the forces transmitted by rubber 
bands and strings, but to reach this understanding we must show a representation of the 
total field, as we do in the four examples following.  The examples below show you how 
Faraday, the father of field theory, understood how his “lines of force” picture explained 
Coulomb’s Law at a more fundamental level than simply stating it, as we did in Equation 
(2.2.1). 
 
 
2.11.1 Charge in the Field of a Van de Graaff Movies 
 
Consider Figure 2.11.1(a) below. The figure illustrates the repulsive force transmitted 
between two objects by their electric fields. The system consists of a charged metal 
sphere of a van de Graaff generator.  This sphere is fixed in space and is not free to move.  
The other object is a small charged sphere with charge of the same sign, that is free to 
move (we neglect the force of gravity on this sphere).  According to Coulomb’s law, 
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these two like charges repel each other.  That is, the small sphere experiences a repulsive 
force away from the van de Graaff sphere.   
 

  
    (a)   link3            (b)  link4 

Figure 2.11.1 (a) Two charges of the same sign that repel one another because of the 
“stresses” transmitted by electric fields.  We use both the “grass seeds” representation 
and the ”field lines” representation of the electric field of the two charges. (b) Two 
charges of opposite sign that attract one another because of the stresses transmitted by 
electric fields. 
 
The movie linked to the Figure 2.11.1(a) above depicts the motion of the small sphere 
and of the electric fields in this situation, where the motion of the electric field in in the 
direction of   


E ×

B , the direction of electromagnetic energy flow.  Note that to repeat the 

motion of the small sphere in the animation, we have the small sphere “bounce off” of a 
small plastic square fixed in space some distance from the van de Graaff generator.   

 
Before we discuss this further, consider Figure 2.11.1(b), which shows one frame of a 
movie of the interaction of two charges with opposite signs.  Here the charge on the small 
sphere is opposite to that on the van de Graaff sphere. By Coulomb’s law, the two objects 
now attract one another, and the small sphere feels a force attracting it toward the van de 
Graaff. To repeat the motion of the small sphere in the animation, we have that charge 
“bounce off” of a plastic square fixed in space near the van de Graaff.  
 
The point of these two movies is to underscore the fact that the Coulomb force between 
the two charges is not “action at a distance.” Rather, as we outlined in Section 1.1, the 
stress is transmitted by direct “contact” from the charges on the van de Graaff to the 
immediately surrounding space, via the electric field of the charge on the van de Graaff.  
That stress is then transmitted from one element of space to a neighboring element, in a 
continuous manner, until it is transmitted to the region of space contiguous to the small 
sphere, and thus ultimately to the small sphere itself.  Although the two spheres are not in 
direct contact with one another, they are in direct contact with a medium or mechanism 
that exists between them.  The force between the small sphere and the van de Graaff is 
transmitted (at a finite speed, the speed of light) by stresses induced in the intervening 
space by the fact that they are charged.   
 
 

https://youtu.be/9PvoQfwVHlY
https://youtu.be/WWbHTunlLk8


 
 

2-28 

2.11.2 Charged Particle Moving in a Constant Electric Field Movie 
 
As another example of the stresses transmitted by electric fields, and of the interchange 
of energy between fields and particles, consider a positive electric charge 0q >  moving 
in a constant electric field. 
 
Suppose the charge is initially moving upward along the positive z-axis in a constant 
background field    


E = −E0k̂ . Since the charge experiences a constant downward force 

    

Fe = q


E = −qE0k̂ , it eventually comes to rest (say, at the origin z = 0), and then moves 

back down the negative z-axis.  This motion and the fields that accompany it are shown 
in Figure 2.11.2, at two different times. 
 

  

 

  
   (a)   link5         (b)   link6 
 

Figure 2.11.2 A positive charge moving in a constant electric field which points 
downward.  (a) The total field configuration when the charge is still out of sight on the 
negative z-axis.  (b) The total field configuration when the charge comes to rest at the 
origin, before it moves back down the negative z-axis. 

 
How do we interpret the motion of the charge in terms of the stresses transmitted by the 
fields?  Faraday would have described the downward force on the charge in Figure 
2.11.2(b) as follows.  Let the charge be surrounded by an imaginary sphere centered on it, 
as shown in Figure 2.11.3. The field lines piercing the lower half of the sphere transmit a 
tension that is parallel to the field. This is a stress pulling downward on the charge from 
below. The field lines draped over the top of the imaginary sphere transmit a pressure 
perpendicular to themselves. This is a stress pushing down on the charge from above. The 
total effect of these stresses is a net downward force on the charge. 
 
 
 

https://youtu.be/i7XSdpAcUqo
https://youtu.be/i7XSdpAcUqo
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Figure 2.11.3 An electric charge in a constant downward electric field.  We enclose the 
charge in an imaginary sphere in order to discuss the stresses transmitted across the 
surface of that sphere by the electric field. 

 
Viewing the movie associated with Figure 2.11.2 greatly enhances Faraday’s 
interpretation of the stresses in the static image.  As the charge moves upward, it is 
apparent in the movie that the electric field lines are generally compressed above the 
charge and stretched below the charge. This field configuration enables the transmission 
of a downward force to the moving charge we can see as well as an upward force to the 
charges that produce the constant field, which we cannot see. The overall appearance of 
the upward motion of the charge through the electric field is that of a point being forced 
into a resisting medium, with stresses arising in that medium as a result of that 
encroachment. 

 
The kinetic energy of the upwardly moving charge is decreasing as more and more 
energy is stored in the compressed electrostatic field, and conversely when the charge is 
moving downward. Moreover, because the field line motion in the movie is in the 
direction of the energy flow, as we discussed in Section 1.8.4, we can explicitly see the 
electromagnetic energy flow away from the charge into the surrounding field when the 
charge is slowing. Conversely, we see the electromagnetic energy flow back to the charge 
from the surrounding field when the charge is being accelerated back down the z-axis by 
the energy released from the field.  The kinetic energy of the charge is flowing into the 
energy density of the local electric field when it is slowing, and vice versa when it is 
accelerating.  
 

Finally, consider momentum conservation.  The moving charge in the animation of 
Figure 2.11.2 completely reverses its direction of motion over the course of the 
animation. How do we conserve momentum in this process?  Momentum is conserved 
because momentum in the positive z-direction is transmitted from the moving charge to 
the charges that are generating the constant downward electric field (not shown).   This is 
plausible from the field configuration shown in Figure 2.11.2(b).  The field stress, which 
pushes downward on the charge, is accompanied by a stress pushing upward on the 
charges generating the constant field. 
 
 



 
 

2-30 

2.11.3 Charged Particle at Rest in a Time-Varying Electric Field Movie 
 
As a third example of the stresses transmitted by electric fields, consider a positive point 
charge fixed at rest at the origin in an external field that is constant in space but varies in 
time.  This external field is uniform but non-constant and varies according to the equation 
 

 
    


E = − E0 sin4 2π t

T
⎛
⎝⎜

⎞
⎠⎟

k̂.  (2.11.1) 

 

    
           (a)   link 7     (b)   link7 
 
Figure 2.11.4 Two frames of a movie of the electric field around a positive charge fixed 
at rest in a time-changing electric field that points downward.  The orange vector is the 
electric field and the lighter-colered vector is the force on the point charge. 

 
Figure 2.11.4 shows two frames of a movie of the total electric field configuration for this 
situation.  Figure 2.11.4(a) is at t = 0, when the vertical electric field is zero.  Frame 
2.11.4(b) is at a quarter period later, when the downward electric field is at a maximum.  
As in Figure 2.11.3 above, we interpret the field configuration in Figure 2.11.4(b) as 
indicating a net downward force on the stationary charge.  The motion of the field lines in 
the movie associated with Figure 2.11.4, which is in the direction of the electromagnetic 
energy flow (see Section 1.8.4), shows the dramatic inflow of energy into the 
neighborhood of the charge as the external electric field grows in time, with a resulting 
build-up of stress that transmits a downward force to the positive charge. 
 
We can estimate the magnitude of the force on the charge in Figure 2.11.4(b) as follows.  
At the time shown in Figure 2.11.4(b), the distance   r0  above the charge at which the 
electric field of the charge is equal and opposite to the constant electric field is 
determined by the equation 

 
  
E0 =

q
4π ε0 r0

2 . (2.11.2) 

 
The surface area of a sphere of this radius is   A =4π r0

2 = q / ε0 E0 .  In Section 3.4 of 
Chapter 3, Eq. (3.4.8), we show that the pressure (force per unit area) and/or tension 
transmitted across the surface of this sphere surrounding the charge is of the order of 

https://youtu.be/wM-nuU2X_5A
https://youtu.be/wM-nuU2X_5A
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  ε0E2 / 2 .  Because the electric field on the surface of the sphere is of order   E0 , the total 

force transmitted by the field is of order   ε0E0
2 / 2  times the area of the sphere, or  

 

  (ε0E0
2 / 2)(4πr0

2 ) = (ε0E0
2 / 2)(q / ε0E0 ) ≈ qE0 , 

 
as we expect. 
 
Of course this downward net force is a combination of a pressure pushing down on the 
top of the sphere and a tension pulling down across the bottom of the sphere.  However, 
the rough estimate that we have just made demonstrates that the pressures and tensions 
transmitted across the surface of this sphere surrounding the charge are plausibly of order 

  ε0E2 / 2 . 
 
2.11.4 Like and Unlike Charges Hanging from Pendulums Movies 
 
Consider two charges hanging from pendulums whose supports can be moved closer or 
further apart by an external agent.  First, suppose the charges both have the same sign, 
and therefore repel. 
 

       link8 
 

Figure 2.11.5 Two pendulums from which are suspended charges of the same sign.  We 
artificially terminate the field lines at a fixed distance from the charges to avoid visual 
confusion 

Figure 2.11.5 shows the situation when an external agent tries to move the supports (from 
which the two positive charges are suspended) together.  The force of gravity is pulling 
the charges down, and the force of electrostatic repulsion is pushing them apart on the 
radial line joining them.  The behavior of the electric fields in this situation is an example 
of an electrostatic pressure transmitted perpendicular to the field.  That pressure tries to 
keep the two charges apart in this situation, as the external agent controlling the 
pendulum supports tries to move them together. When we move the supports together the 
charges are pushed apart by the pressure transmitted perpendicular to the electric field. 
 
In contrast, suppose the charges are of opposite signs, and therefore attract.  Figure 2.11.6 
shows the situation when an external agent moves the supports (from which the two 

https://youtu.be/KGx0xNyEpfE


 
 

2-32 

charges are suspended) together.  The force of gravity is pulling the charges down, and 
the force of electrostatic attraction is pulling them together on the radial line joining 
them.  The behavior of the electric fields in this situation is an example of the tension 
transmitted parallel to the field.  That tension tries to pull the two unlike charges together 
in this situation. 
 

  link9 
 

Figure 2.11.6 Two pendulums with suspended charges of opposite sign. 

 
When we move the supports together the unlike charges are pulled together by the 
tension transmitted parallel to the electric field.  We artificially terminate the field lines at 
a fixed distance from the charges to avoid visual confusion. 

 
2.11.5 Pressures and Tensions Transmitted by Electric Fields 
 
Let us move from these specific examples to a more general discussion of how Faraday 
understood the forces transmitted by fields (see also Section 1.1).  To do this, we consider 
a more general case where a closed surface (an imaginary box) is placed in an electric 
field, as shown in Figure 2.11.7. 
 
If we look at the top face of the imaginary box, there is an electric field pointing in the 
outward normal direction of that face. From Faraday’s field theory perspective, we would 
say that the field on that face transmits a tension along itself across the face, thereby 
resulting in an upward pull, just as if we had attached a string under tension to that face 
to pull it upward.  Similarly, if we look at the bottom face of the imaginary box, the field 
on that face is anti-parallel to the outward normal of the face, and according to Faraday’s 
interpretation, we would again say that the field on the bottom face transmits a tension 
along itself, giving rise to a downward pull, just as if a string has been attached to that 
face to pull it downward.  Note that this is a pull parallel to the outward normal of the 
bottom face, regardless of whether the field is into the surface or out of the surface. 
 
 
If we want to know the total electric force transmitted to the interior of this imaginary 
box in the up-down direction, we add these two transmitted stresses. If the electric field is 

https://youtu.be/vAWan1_Utvg
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homogeneous, the total force transmitted to the interior of the box in the up-down 
direction is a pull upward plus an equal and opposite pull downward, and adds to zero.    
 
In contrast, if the top of this imaginary box is sitting inside a capacitor, for which the 
electric field is vertical and constant, and the bottom is sitting inside one of the plates of 
the capacitor, where the electric field is zero, then there is a net pull upward, and we say 
that the electric field exerts a upward tension on the plates of the capacitor.   We can 
deduce this by simply looking at the shape of the total electric field.  A quantitative 
calculation of the tension transmitted by electric fields in this example is presented in 
Section 3.4, see Eq. (3.4.8). 
 
 
For the left side of the imaginary box, the field on that face is perpendicular to the 
outward normal of that face, and Faraday would have said that the field on that face 
transmits a pressure perpendicular to itself, causing a push to the right.   Similarly, for the 
right side of the imaginary box, the field on that face is perpendicular to the outward 
normal of the face, and the field would transmit a pressure perpendicular to itself.  In this 
case, there is a push to the left. 
 
 
 

 

Figure 2.11.7 An imaginary blue box in an electric 
field (long orange vectors).  The short gray vectors 
indicate the directions of stresses transmitted across the 
surface of the imaginary box by the field, either 
pressures (on the left or right faces of the box) or 
tensions (on the top and bottom faces of the box). 

 
 
 
 
 
 
Note that the term “tension” is used when the stress transmitted by the field is parallel (or 
anti-parallel) to the outward normal of the surface, and “pressure” when it is 
perpendicular to the outward normal.  The magnitude of these pressures and tensions on 
the various faces of the imaginary surface in Figure 2.11.7 is given by   ε0E2 / 2  for the 
electric field.  This quantity has units of force per unit area, or pressure.  It is also the 
energy density stored in the electric field since energy per unit volume has the same units 
as pressure (see Section 5.3). 
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2.12 Summary 
 
• The electric force exerted by a charge 1q  on a second charge 2q  is given by 

Coulomb’s law: 
 

 1 2 1 2
12 2 2

0

1ˆ ˆ
4e

q q q qk
r rπε

=F r = r


,  

 where  

 9 2 2

0

1 8.99 10  N m / C
4ek πε

= = × ⋅  

  is the Coulomb constant. 
 
• The electric field at a point in space is defined as the electric force acting on a test 

charge 0q  divided by 0q :  

 
0 0

0

lim e
q q→

FE =



.  

  
 
• The electric field at a distance  r  from a charge  q  is   
 

 2
0

1 ˆ
4

q
rπε

=E r


.  

 
• Using the superposition principle, the electric field due to a collection of point 

charges, each having charge  qi  and located at a distance  ri  away is  
 

 2
0

1 ˆ
4

i
i

i i

q
rπε

= ∑E r


.  

 
• A particle of mass  m  and charge  q  moving in an electric field E


 has an acceleration 

 

 
   
a =

q

E

m
.  

 
• An electric dipole consists of two equal but opposite charges.  The electric dipole 

moment vector   
p  points from the negative charge to the positive charge, and has a 

magnitude  
  p = 2aq . 

  
• The torque acting on an electric dipole places in a uniform electric field E


is 
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
τ = p ×


E . 

 
• The potential energy of an electric dipole in a uniform external electric field E


is 

 

   U = −p ⋅

E . 

 

• The electric field at a point in space due to a continuous charge element dq  is 
 

 2
0

1 ˆ
4

dqd
rπε

=E r


.  

 
• At sufficiently far away from a continuous charge distribution of finite extent, the 

electric field approaches the “point-charge” limit. 
 
 
• As discussed in Section 1.1.2, if we look at the shape of electric field lines for the 

total electric field, as Faraday did, the electric forces transmitted by fields can be 
understood at a more fundamental level by analogy to the more familiar forces 
exerted by strings and rubber bands.   

 
 
2.13 Problem-Solving Strategies 
 
In this chapter, we have discussed how electric field can be calculated for both the 
discrete and continuous charge distributions. For the former, we apply the superposition 
principle: 

 2
0

1 ˆ
4

i
i

i i

q
rπε

= ∑E r


. 

 
For the latter, we must evaluate the vector integral 
 

2
0

1 ˆ
4

dq
rπε

= ∫E r


, 

 
where  r  is the distance from  dq  to the field point P  and   ̂r  is the corresponding unit 
vector. To complete the integration, we shall follow the procedures outlined below: 
 

(1) Start with 2
0

1 ˆ
4

dqd
rπε

=E r


. 

 
(2) Rewrite the charge element  dq  as 
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           (length)
          (area)
         (volume)

d
dq dA

dV

λ
σ
ρ

⎧
⎪= ⎨
⎪⎩


, 

 
depending on whether the charge is distributed over a length, an area, or a volume.  
 
(3) Substitute  dq  into the expression for dE


. 

 
(4) Specify an appropriate coordinate system (Cartesian, cylindrical or spherical) and 

express the differential element (  d ,  dA , or  dV ) and  r  in terms of the coordinates 
(see Table 2.1 below for summary.) 

 
 

 Cartesian (x, y, z) Cylindrical (ρ, φ, z) Spherical (r, θ, φ) 
dl  ,   ,   dx dy dz  ,   ,   d d dzρ ρ φ  ,  ,  sindr r d r dθ θ φ  

dA  ,   ,   dx dy dy dz dz dx  ,   ,   d dz d dz d dρ ρ φ ρ φ ρ  2,  sin ,  sinr dr d r dr d r d dθ θ φ θ θ φ  

dV  dx dy dz  d d dzρ ρ φ  2 sinr dr d dθ θ φ  
 

Table 2.1 Differential elements of length, area and volume in different coordinates 
 
 
(5) Rewrite dE


 in terms of the integration variable(s), and apply symmetry argument to 

identify non-vanishing component(s) of the electric field.  
 
(6) Complete the integration to obtain E


. 

 
In the Table below we illustrate how the above methodologies can be utilized to compute 
the electric field for an infinite line charge, a ring of charge and a uniformly charged disk. 
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 Line charge Ring of charge Uniformly charged disk 

                  Figure 

 
 

 
(2) Express dq in 
terms of charge 
density 

 dq = λ d ′x  dq dλ=   dq dAσ=  

 (3) Write down dE 2e
dx

dE k
r
λ ′

=
′

 2e
dldE k
r
λ=  2e

dAdE k
r

σ=  

(4) Rewrite r and the 
differential element 
in terms of the 
appropriate 
coordinates  

dx′  

cos
y
r

θ =
′
 

2 2r x y′ ′= +  

d Rdφ′=  

cos
z
r

θ =  

2 2r R z= +  

2 ' 'dA r drπ=  

cos
z
r

θ =  

2 2r r z′= +  

(5) Apply symmetry 
argument to identify 
non-vanishing 
component(s) of dE 

2 2 3/ 2

cos

( )

y

e

dE dE

ydx
k
x y

θ
λ

=
′

=
′ +

 
2 2 3/ 2

cos

( )

z

e

dE dE
Rz dk

R z

θ
λ φ

=
′

=
+

 
2 2 3/ 2

cos
2
( )

z

e

dE dE
zr drk

r z

θ
πσ

=
′ ′

=
′ +

 

(6) Integrate to get E 

/ 2

2 2 3/ 2/ 2

2 2

( )
2 / 2

( / 2)

y e

e

dx
E k y

x y
k
y y

λ

λ

+

−
=

+

=
+

∫
�







 
  

Ez = ke

Rλz
(R2 + z2 )3/ 2 d ′φ

0

2π

∫

= ke

(2πRλ)z
(R2 + z2 )3/ 2

= ke

Qz
(R2 + z2 )3/ 2

 

  

Ez = 2πσkez
′r d ′r

( ′r 2 + z2 )3/ 20

R

∫

= 2πσke

z
| z |

−
z

z2 + R2

⎛

⎝⎜
⎞

⎠⎟

 

 
 
2.14 Solved Problems 
 
 
2.14.1 Hydrogen Atom 
 
In the classical model of the hydrogen atom, the electron revolves around the proton with 
a radius of   r = 5.3×10−11m . The magnitude of the charge of the electron and proton is 

  e = 1.6 ×10−19 C .  
 



 
 

2-38 

(a) What is the magnitude of the electric force between the proton and the electron?  
 
(b) What is the magnitude of the electric field due to the proton at  r ?  
 
(c) What is ratio of the magnitudes of the electrical and gravitational force between 
electron and proton? Does the result depend on the distance between the proton and the 
electron? The mass of the electron is   me = 9.1×10−31kg  and the mass of the proton is 

  
mp = 1.7 ×10−27 kg . 
 
(d) In light of your calculation in (b), explain why electrical forces do not influence the 
motion of planets. 
 
Solutions:  
 
(a) The magnitude of the force is given by 
 

 
2

2
0

1
4e

eF
r

=
πε

.  

 
Now we can substitute our numerical values and find that the magnitude of the force 
between the proton and the electron in the hydrogen atom is 
 

 
9 2 2 19 2

8
11 2

(9.0 10 N m /C )(1.6 10 C) 8.2 10 N
(5.3 10 m)eF

−
−

−

× ⋅ ×= = ×
×

.  

 
(b) The magnitude of the electric field due to the proton is given by 
  

 
9 2 2 19

11
2 10 2

0

1 (9.0 10 N m /C )(1.6 10 C) 5.76 10 N /C
4 (0.5 10 m)

qE
rπε

−

−

× ⋅ ×= = = ×
×

. 

 
(c) The ratio of the magnitudes of the electric and gravitational force is given by 
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γ =

1
4πε0

e2

r 2

⎛
⎝⎜

⎞
⎠⎟

G
mpme

r 2

⎛

⎝⎜
⎞

⎠⎟

=

1
4πε0

e2

Gmpme

=

= (9.0×109 N ⋅m2 / C2 )(1.6×10−19 C)2

(6.67 ×10−11N ⋅m2 / kg2 )(1.7 ×10−27 kg)(9.1×10−31kg)
= 2.2×1039

 

 
 , 

This ratio is independent of  r , the distance between the proton and the electron.  
 
(d) The electric force is 39 orders of magnitude stronger than the gravitational force 
between the electron and the proton. Why do the gravitational forces and not the 
electrical forces determine the large-scale motions of planets? The answer is that the 
magnitudes of the charge of the electron and proton are equal. The best experiments show 
that the difference between these magnitudes is a number on the order of  10−24 . Since 
objects like planets have essentially the same number of protons as electrons, they are 
electrically neutral. Therefore the force between planets is entirely determined by gravity.  
 
 
2.14.2 Millikan Oil-Drop Experiment 
 
An oil drop of radius   R = 1.64 ×10−6 m  and mass density  ρoil = 8.51×102 kg m3  is 

allowed to fall from rest and then enters into a region of constant external field E


 applied 
in the downward direction. The oil drop has an unknown electric charge  q  (due to 
irradiation by bursts of X-rays). The magnitude of the electric field is adjusted until the 
gravitational force 

   

Fg  on the oil drop is exactly balanced by the electric force, 

    

Fe. Suppose this balancing occurs when the electric field is 

5ˆ ˆ(1.92 10 N C)yE= − = − ×E j j


, with 51.92 10 N CyE = × .  
 
(a) What is the mass of the oil drop? 
 
(b) What is the charge  Q  on the oil drop in units of electronic charge   e = 1.6 ×10−19 C ? 
 
Solutions:  
 
(a) Assume that the oil drop is a sphere of radius  R  with volume   V = (4 / 3)πR3 . Then 
the mass  M  of the oil drop is 
   M = ρoilV = ρoil (4 / 3)πR3 .  
 
Now we can substitute our numerical values into our symbolic expression for the mass, 
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   M = ρoil (4π / 3)R3 = (8.51×102 kg m3)(4π / 3)(1.64 ×10−6 m)3 = 1.57 ×10−14 kg .  
 
(b) The oil drop will be in static equilibrium when the gravitational force exactly balances 
the electrical force: g e+ =F F 0

 
. Since the gravitational force points downward, the 

electric force on the oil must be upward. Using our force laws, we have 
 
 

    
0 = Mg + Q


E   ⇒   Mg = −QEy .  

 
With the electrical field pointing downward, we conclude that the charge on the oil drop 
must be negative. Notice that we have chosen the unit vector ĵ  to point upward. We can 
solve this equation for the charge on the oil drop: 
 

 
  
Q = −

Mg
Ey

= −
(1.57 ×10−14 kg)(9.80m / s2 )

1.92 ×105 N C
= −8.03×10−19C .  

 
Since the electron has charge   e = 1 .6 ×10−19 C , the charge of the oil drop in units of  e  is 
 

 
  
N =

Q
e
=

8.02 ×10−19 C
1.6 ×10−19 C

= 5 .  

 
You may at first be surprised that this number is an integer, but the Millikan oil drop 
experiment was the first direct experimental evidence that charge is quantized. Thus, 
from the given data we can assert that there are five electrons on the oil drop! 
 
2.14.3 Charge Moving Perpendicularly to an Electric Field 
 
An electron is injected horizontally into a uniform field produced by two oppositely 
charged plates, as shown in Figure 2.14.1. The particle has an initial velocity 0 0

ˆv=v i  

perpendicular to E


. 
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Figure 2.14.1 Charge moving perpendicular to an electric field 
 
(a) While between the plates, what is the force on the electron? 
 
(b) What is the acceleration of the electron when it is between the plates? 
 
(c) The plates have length   L1  in the  x -direction. At what time   t1  will the electron leave 
the plate? 
 
(d) Suppose the electron enters the electric field at time   t = 0 . What is the velocity of the 
electron at time   t1  when it leaves the plates?  
 
(e) What is the vertical displacement of the electron after time   t1  when it leaves the 
plates?  
 
(f) What angle  θ1  does the electron make with the horizontal, when the electron leaves 
the plates at time   t1? 
 
(g) The electron hits the screen located a distance   L2  from the end of the plates at a time 

  t2 . What is the total vertical displacement of the electron from time   t = 0  until it hits the 
screen at   t2 ? 
 
 
Solutions:   
 
(a) Since the electron has a negative charge,  q = −e , the force on the electron is 
 
 ˆ ˆ( )( )e y yq e e E eE= = − = − − =F E E j j

  
.  
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where the electric field is written as 
    

E = −Ey ĵ , with 0yE > . The force on the electron is 

upward. Note that the motion of the electron is analogous to the motion of a mass that is 
thrown horizontally in a uniform gravitation field. The mass follows a parabolic 
trajectory downward. Since the electron is negatively charged, the constant force on the 
electron is upward and the electron will be deflected upwards on a parabolic path. 
 
(b) The acceleration of the electron is 
  

 ˆ ˆy yqE eEq
m m m

= = − =Ea j j


 ,  

 
and its direction is upward.  
 
(c) The time of passage for the electron is given by   t1 = L1 / v0 .  The time 1t  is not 
affected by the acceleration because   v0 , the horizontal component of the velocity which 
determines the time, is not affected by the field.  
 
(d) The electron has an initial horizontal velocity, 0

ˆv=0v i . Since the acceleration of the 
electron is in the positive  y -direction, only the  y -component of the velocity changes. 
The velocity at a later time 1t  is given by 
 

 1
0 1 0 1 0

0

ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆy y
x y y

eE eE L
v v v a t v t v

m mv
⎛ ⎞⎛ ⎞

= + = + + + ⎜ ⎟⎜ ⎟
⎝ ⎠ ⎝ ⎠

v i j i j = i j = i j .  

 
(e) From the figure, we see that the electron travels a horizontal distance   L1  in the time 

  t1 = L1 / v0  and then emerges from the plates with a vertical displacement  
 

 
2

2 1
1 1

0

1 1
2 2

y
y

eE Ly a t
m v

⎛ ⎞⎛ ⎞
= = ⎜ ⎟⎜ ⎟

⎝ ⎠⎝ ⎠
.  

 
(f) When the electron leaves the plates at time 1t , the electron makes an angle  θ1  with the 
horizontal given by the ratio of the components of its velocity,  
 

 1 0 1
2

0 0

( / )( / )
tan y y y

x

v eE m L v eE L
v v mv

θ = = = .  

 
(g) After the electron leaves the plate, there is no longer any force on the electron so it 
travels in a straight path. The deflection   y2  is 
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 1 2
2 2 1 2

0

tan yeE L L
y L

mv
θ= = ,  

  
and the total deflection becomes 
 

 
2
1 1 2 1

1 2 1 22 2 2
0 0 0

1 1
2 2

y y yeE L eE L L eE L
y y y L L

mv mv mv
⎛ ⎞= + = + = +⎜ ⎟⎝ ⎠

.  

 
 
2.14.4 Electric Field of a Dipole 
 
Consider the electric dipole moment shown in Figure 2.7.1. 
 
(a) Show that the electric field of the dipole in the limit where  r >> a  is 
 

 
  
Ex =

3p
4πε0r

3
sinθ cosθ ,    Ey =

p
4πε0r

3
(3cos2θ − 1)   

 
where   sinθ = x / r  and cos /y rθ = .  
 
(b) Show that the above expression for the electric field can also be written in terms of 
the polar coordinates as 
 
     


E(r,θ) = Er r̂ + Eθ θ̂   

 
where  

 3 3
0 0

2 cos sin
,    

4 4r
p pE E
r rθ
θ θ

πε πε
= =  .  

   
Solutions:  
 
(a) Let’s compute the electric field strength at a distance  r >> a  due to the dipole. The 
 x -component of the electric field strength at the point  P  with Cartesian coordinates 
  (x, y,0)  is given by 
  

 3/ 2 3/ 22 2 2 2 2 2
0 0

cos cos
4 4 ( ) ( )

x
q q x x

E
r r x y a x y a

θ θ
πε πε

+ −

+ −

⎛ ⎞⎛ ⎞ ⎜ ⎟= − = −⎜ ⎟ ⎜ ⎟⎡ ⎤ ⎡ ⎤⎝ ⎠ + − + +⎣ ⎦ ⎣ ⎦⎝ ⎠
, 

where  
   2 2 2 2 22 cos ( )r r a ra x y aθ± = + = +  .  
 
Similarly, the y -component is given by 
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 3/ 2 3/ 22 2 2 2 2 2
0 0

sin sin
4 4 ( ) ( )

y
q q y a y a

E
r r x y a x y a

θ θ
πε πε

+ −

+ −

⎛ ⎞⎛ ⎞ − +⎜ ⎟= − = −⎜ ⎟ ⎜ ⎟⎡ ⎤ ⎡ ⎤⎝ ⎠ + − + +⎣ ⎦ ⎣ ⎦⎝ ⎠
. 

 
We shall make a polynomial expansion for the electric field using the Taylor-series 
expansion. We will then collect terms that are proportional to   1 / r3  and ignore terms that 
are proportional to 51/ r , where   r = (x2 + y2 )1/ 2 . We begin with 
 

 
  
(x2 + ( y ± a)2 )−3/ 2 = (x2 + y2 + a2 ± 2ay)−3/ 2 = r−3 1+

a2 ± 2ay
r 2

⎛

⎝⎜
⎞

⎠⎟

−3/ 2

.  

 
In the limit where  r >> a , we use the Taylor-series expansion with   s = (a2 ± 2ay) / r 2 : 
 

 
   
(1+ s)−3/ 2 = 1−

3
2

s + 15
8

s2 − .  

  
The above equations for the components of the electric field becomes 
 

 
   
Ex =

q
4πε0

6xya
r5 +   

and 

 
   
Ey =

q
4πε0

−
2a
r3 +

6y2a
r5

⎛

⎝⎜
⎞

⎠⎟
+  ,  

 
where we have neglected the terms of order equal to and greater than   s2  (all the terms  of 
order   s2  and higher are denoted by the symbol   O(s2 ) ). The electric field can then be 
written as 
 

     
    


E = Ex î + Ey ĵ = q

4πε0

−
2a
r3 ĵ + 6ya

r5 (x î + y ĵ)
⎡

⎣
⎢

⎤

⎦
⎥ =

p
4πε0r

3

3yx
r 2 î + 3y2

r 2 − 1
⎛

⎝⎜
⎞

⎠⎟
ĵ

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

,  

 
where we have made used of the definition of the magnitude of the electric dipole 
moment   p = 2aq . 
 
In terms of polar coordinates, with   sinθ = x / r  and   cosθ = y / r , (as seen from Figure 
2.14.4), we obtain the desired results: 
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Ex =

3p
4πε0r

3
sinθ cosθ,     Ey =

p
4πε0r

3
(3cos2θ − 1) .   

  
(b) We begin with the expression obtained in (a) for the electric dipole in Cartesian 
coordinates:  

 
    


E(r,θ) =

p
4πε0r

3
3sinθ cosθ î + (3cos2θ − 1) ĵ⎡⎣ ⎤⎦ .  

 
With a little algebra, the above expression may be rewritten as  
 

 

    


E(r,θ) =

p
4πε0r

3
2cosθ(sinθ î + cosθ ĵ) + sinθ cosθ î + (cos2θ − 1) ĵ⎡⎣ ⎤⎦

=
p

4πε0r
3

2cosθ(sinθ î + cosθ ĵ) + sinθ(cosθ î − sinθ ĵ)⎡⎣ ⎤⎦ ,
  

 
where we used the trigonometric identity  (cos2θ − 1) = − sin2θ . Because the unit vectors 

  ̂r  and  θ̂  in polar coordinates can be decomposed as  
 

 
  

r̂ = sinθ î + cosθ ĵ
θ̂ = cosθ î − sinθ ĵ ,

  

 
the electric field in polar coordinates is given by 
 

 
    


E(r,θ) =

p
4πε0r

3
2cosθ r̂ + sinθ θ̂⎡⎣ ⎤⎦ .  

 
The magnitude of   


E  is  

 
  
E = (Er

2 + Eθ
2 )1/ 2 =

p
4πε0r

3
(3cos2θ +1)1/ 2 .  

 
 
2.14.5 Electric Field of an Arc 
 
A thin rod with a uniform charge per unit length λ  is bent into the shape of an arc of a 
circle of radius  R . The arc subtends a total angle  2θ0 , symmetric about the  x -axis, as 
shown in Figure 2.14.2.  What is the electric field   


E  at the origin  O ? 

 
Solution: Consider a differential element of length   d = R dθ , which makes an angle θ  
with the  x -axis, as shown in Figure 2.14.2(b).  The amount of charge it carries is 
  dq = λ d = λR dθ . The contribution to the electric field at O is 
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d

E = 1

4πε0

dq
r2 r̂ = 1

4πε0

dq
R2 (−cosθ î − sinθ ĵ) = 1

4πε0

λ dθ
R

(−cosθ î − sinθ ĵ) .  

 

  
(a)     (b) 

Figure 2.14.2 (a) Geometry of charged source. (b) Charge element  dq  
 

Integrating over the angle from  −θ0  to 0θ+ , we have 
 

 
    


E = 1

4πε0

λ
R

dθ
−θ0

θ0∫ (−cosθ î − sinθ ĵ) = 1
4πε0

λ
R

(−cosθ î − sinθ ĵ)
θ

0

−θ
0

= − 1
4πε0

2λ sinθ0

R
î .  

 
We see that the electric field only has the  x -component, as required by a symmetry 
argument. If we take the limit  θ0 →π , the arc becomes a circular ring. Since sin 0π = , 
the equation above implies that the electric field at the center of a non-conducting ring is 
zero. This is to be expected from symmetry arguments.  On the other hand, for very small 

 θ0 , 0 0sinθ θ≈  and we recover the point-charge limit:    
 

 0 0
2 2

0 0 0

2 21 1 1ˆ ˆ ˆ
4 4 4

R Q
R R R
λθ λθ

πε πε πε
≈ − = − = −E i i i


, 

 
where the charge on the arc is    Q = λ = λ(2Rθ0 ) . 
 
 
2.14.6 Electric Field Off the Axis of a Finite Rod 
 
A non-conducting rod of length    with a uniform charge density λ  and charge  Q  is 
lying along the  x -axis, as illustrated in Figure 2.14.3. Compute the electric field at a 
point  P , located at a distance  y  off the axis of the rod. 
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Figure 2.14.3 
 
Solution: The problem can be solved by following the procedure used in Example 2.3. 
Consider a length element  d ′x  on the rod, as shown in Figure 2.13.4. The charge carried 
by the element is dq dxλ ′= .  

 
 

Figure 2.14.4 
 
The electric field at  P  produced by this element is 
 

 
    
d

E = 1

4πε0

dq
′r 2 r̂ = 1

4πε0

λ d ′x
′x 2 + y2 (− sin ′θ î + cos ′θ ĵ) , 
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where the unit vector   ̂r  has been written in Cartesian coordinates:   ̂r = − sin ′θ î + cos ′θ ĵ . 
In the absence of symmetry, the field at  P  has both the  x - and  y -components.  The  x -
component of the electric field is 
 

 2 2 2 2 2 2 3/ 22 2
0 0 0

1 1 1sin
4 4 4 ( )x

dx dx x x dx
dE

x y x y x yx y

λ λ λθ
πε πε πε

′ ′ ′ ′ ′′= − = − = −
′ ′ ′+ + +′ +

. 

 
Integrating from 1x x′ =  to 2x x′ = , we have  
 

 

  

Ex = − λ
4πε0

′x d ′x
( ′x 2 + y2 )3/ 2x1

x2∫ = − λ
4πε0

1
2

du
u3/ 2x1

2 + y2

x2
2 + y2

∫ = λ
4πε0

u−1/ 2 x
2

2 + y 2

x
1

2 + y 2

= λ
4πε0

1

x2
2 + y2

− 1

x1
2 + y2

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
= λ

4πε0 y
y

x2
2 + y2

− y

x1
2 + y2

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

= λ
4πε0 y

(cosθ2 − cosθ1).

 

 
Similarly, the  y -component of the electric field due to the charge element is  
 

 2 2 2 2 2 2 3/ 22 2
0 0 0

1 1 1
cos

4 4 4 ( )y
dx dx y ydx

dE
x y x y x yx y

λ λ λθ
πε πε πε

′ ′ ′′= = =
′ ′ ′+ + +′ +

. 

 
Integrating over the entire length of the rod, we obtain  
 

 
  
Ey =

λ y
4πε0

d ′x
( ′x 2 + y2 )3/ 2x1

x2∫ = λ y
4πε0

1
y2 cos ′θ d ′θ

θ1

θ2∫ = λ
4πε0 y

(sinθ2 − sinθ1) . 

 
where we have used the result obtained in Eq. (2.10.8) in completing the integration. 
 
In the infinite length limit where   x1 → −∞  and 2x → +∞ , with tani ix y θ= , the 
corresponding angles are 1 / 2θ π= −  and 2 / 2θ π= + . Substituting the values into the 
expressions above, we have 
 

 
0

1 20,       
4x yE E

y
λ

πε
= = , 

 
in agreement with the result shown in Eq. (2.10.11). 
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2.15 Conceptual Questions 
 
1. Compare and contrast Newton’s law of gravitation,     


FG = −(Gm1m2 / r 2 )r̂ , and 

Coulomb’s law,     

Fe = (keq1q2 / r 2 )r̂ . 

 
2. Can electric field lines cross each other? Explain.   
 
3. Two opposite charged objects are placed on a line as shown in the figure below.  
 

 
 
The charge on the right is three times the magnitude of the charge on the left. 
Besides infinity, where else can electric field possibly be zero?  

 
 
4. A test charge is placed at the point  P  near a positively charged insulating rod.  
 

 
 

How would the magnitude and direction of the electric field change if the 
magnitude of the test charge were decreased and its sign changed with everything 
else remaining the same? 

 
5. An electric dipole, consisting of two equal and opposite point charges at the ends of 

an insulating rod, is free to rotate about a pivot point in the center. The rod is then 
placed in a non-uniform electric field. Does it experience a force and/or a torque? 

 
 
 
2.16 Additional Problems 
 
2.16.1 Three Point-Like Charged Objects on Vertices of Equilateral Triangle 
 
Three point-like charged objects are placed at the corners of an equilateral triangle, as 
shown in Figure 2.16.1. Calculate the electric force experienced by (a) the  +9.00 µC  
charge, and (b) the  −6.00 µC  charge. 
 
2.16.2 Three Point-Like Charged Objects on Vertices of Right Triangle 
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A right isosceles triangle of side  a  has charges  +q ,    +2q , and  −q  arranged on its 
vertices, as shown in Figure 2.16.2. What is the electric field at point P, midway between 
the line connecting the  +q  and  −q  charges?  Give the magnitude and direction of the 
electric field.   
 
 

                   
 Figure 2.16.1 Three point-like charged objects Figure 2.16.2 
 
 
2.16.3 Four Point-Like Charged Objects 
 
Four point-like charged objects are placed at the corners of a square of side  a , as shown 
in Figure 2.16.3. 

 
Figure 2.16.3 Four point-like charged objects 

 
 

(a) What is the electric field at the location of charge  q ?  
 

(b) What is the electric force on   2q ? 
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2.16.4 Semicircular Wire 
 
A positively charged wire is bent into a semicircle of radius  R , as shown in Figure 
2.16.4. The charge on the semicircle is  Q . However, the charge per unit length along the 
semicircle is non-uniform and given by  λ(θ) = λ0 cosθ .   
 
(a) What is the relationship between  λ0 ,  R  and  Q ?  
 
(b) If a point-like charged object with charge  q  is placed at the origin, what is the force 
on that object? 

 
Figure 2.16.4   

 
2.16.5 Electric Dipole 
 
An electric dipole lying in the  xy -plane with a uniform electric field applied in the 
positive  x -direction is displaced by a small angle θ  from its equilibrium position, as 
shown in Figure 2.16.5.  

 
Figure 2.16.5   

 
The charges are separated by a distance   2a . The moment of inertia of the dipole about 
the center of mass is  Icm .  If the dipole is released from this position, show that its 
angular orientation exhibits simple harmonic motion. What is the period of oscillation? 
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2.16.6 Charged Cylindrical Shell and Cylinder 
 
(a) A uniformly charged circular cylindrical shell of radius  R  and height  h  has a total 
charge  Q . What is the electric field at a point  P  a distance  z  from the bottom side of the 
cylinder as shown in Figure 2.16.6?  (Hint: Treat the cylinder as a set of charged rings.)  
 

 
Figure 2.16.6 A uniformly charged cylinder 

 
(b) If the configuration is instead a solid cylinder of radius  R , height  h  and has a 
uniform volume charge density. What is the electric field at  P ?  (Hint: Treat the solid 
cylinder as a set of charged disks.)  
 
2.16.7 Two Conducting Balls 
 
Two tiny conducting balls of identical mass m  and identical charge  q  hang from non-
conducting threads of length  l . Each ball forms an angle θ  with the vertical axis, as 
shown in Figure 2.16.9.  Assume that θ  is so small that  tanθ ≈ sinθ . 
   
(a) Show that, at equilibrium, the separation between the balls is   r = (q2l / 2πε0mg)1/3 . 
 
(b) If 21.2 10 cml = × , 11.0 10m g= × , and 5.0cmx = , what is q ?  
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Figure 2.16.9 
2.16.8 Torque on an Electric Dipole 
 
An electric dipole consists of two charges 

� 

q1 = +2e  and 

� 

q2 = −2e  (where 

  e = 1.6 ×10−19 C ), separated by a distance 910 md −= . The electric charges are placed 
along the  y -axis as shown in Figure 2.16.10. Suppose a constant external electric field 

ext
ˆ ˆ(3 3 )N/C= +E i j


is applied.  

 
(a) What is the magnitude and direction of the dipole moment?  
  
(b) What is the magnitude and direction of the torque on the dipole?  
 
(c) Do the electric fields of the charges 1q  and 2q  contribute to the torque on the dipole?  

Briefly explain your answer.  

 
Figure 2.16.10 

 
 
 




