Chapter 2

Coulomb’s Law
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Coulomb’s Law
2.1 Electric Charge

There are two types of observed electric charge, which we designate as positive and
negative. The convention was derived from Benjamin Franklin’s experiments. He rubbed
a glass rod with silk and called the charges on the glass rod positive. He rubbed sealing
wax with fur and called the charge on the sealing wax negative. Like charges repel and
opposite charges attract each other. The unit of charge is called the Coulomb (C).

The smallest unit of “free” charge known in nature is the charge of an electron or proton,
which has a magnitude of

e=1.602x107"C. (2.1.1)

Charge of any ordinary matter is quantized in integral multiples of e. An electron carries
one unit of negative charge, —e, while a proton carries one unit of positive charge, +e. In
a closed system, the total amount of charge is conserved since charge can neither be
created nor destroyed. A charge can, however, be transferred from one body to another.

2.2 Coulomb's Law

In this section we will simply state Coulomb’s Law. This is the path followed by almost
all introductory textbooks. But you will get a much better understanding of this law at an
intuitive level in reading Section 2.11 below, where we explain how Faraday thought of
this law, in terms of his lines of force (see also Section 1.1).

Consider a system of two point-like objects with charges, ¢, and g,, separated by a

distance  in vacuum. The electric force exerted by ¢, on ¢, is given by Coulomb's law,

4.4, i

B )
r

F,=k

12

2.2.1)

where £, is the Coulomb constant, and £ =¥/ r is a unit vector directed from ¢, to ¢, as
illustrated in Figure 2.2.1(a). Similarly, the force on ¢, due to g, is given by F F21 ,
as illustrated in Figure 2.2.1(b). This is consistent with Newton's third law.
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Figure 2.2.1 Coulomb interaction between two charges

Note that electric force is a vector that has both magnitude and direction. In SI units, the
Coulomb constant &, is given by

1
4re,

k =

e

=8.9875x10°N-m*/C?, (2.2.2)

where g is the electric constant called the permittivity of free space. The value of g is
exactly equal to

g =—0, (2.2.3)

where the constant p, = 47 X 107 N-s*-C? is called the permeability of free space, and
c=299792458 m-s™ is the speed of light. Therefore

1 1
80 = 2 = -9 2 2 -1\2

g’ (4rx107 N-s*-C?)(299792458 m-s™) (2.2.4)
=8.854187817..x10™" C* /N -m?.

Before the speed of light was exactly defined to be ¢=299792458 m-s”, the value of g,
depended on the experimentally measured value of the speed of light. Now both &, and

u, are defined exactly.

2.3 Principle of Superposition
Coulomb’s law applies to any pair of point charges. When more than two charges are

present, the net force on any one charge is simply the vector sum of the forces exerted on
it by the other charges. For example, if three charges are present, the resultant force

experienced by ¢, due to ¢, and g, will be

F,=F,+F,. 2.3.1)
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The superposition principle is illustrated in the example below.
Example 2.1: Three Charges

Three charges are arranged as shown in Figure 2.3.1. Find the force on the charge
g, assuming that ¢ =6.0X 10°C , q,=—q,=—6.0% 10°C , q,=3.0% 10°C and
a=2.0x10"m.

) g F;
; x> & RS
q ; r; .\
: @— o
F:; Y 3 ‘/3 r
a 42
B
\ @
(II + | X

Figure 2.3.1 A system of three charges

Solution: Using the superposition principle, the force on g, is

e 1 [ g4, | 9,9 »
F,=F,+F, = e, [ r:; I+ };23 I |

In this case the second term will have a negative coefficient, since g, is negative. The

unit vectors f; and £, do not point in the same directions. In order to compute this sum,

we can express each unit vector in terms of its Cartesian components and add the forces
according to the principle of vector addition.

From the figure, we see that the unit vector r,, which points from ¢, to g, can be written
as

n 2. 2 50
I‘13=C0891+Sll’19_]=§(1+]).

Similarly, the unit vector f,, =i points from g, to g,. Therefore upon adding the
components, the total force is
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.1 1 2 2 o (=4,
T (q1q3f A fBJ_ [ 94, £ TP qlz)q3i
a

=——| —/—=——-—(i+}))
e, T ) e (2 2
_ L aa|[V2 ) V2
4re, o || 4 47

The magnitude of the total force is given by

) ) 1/2
1 g4, \/5 \/5
P
dre, a 4 4
(6.0x107°C)(3.0x10°C)
(2.0 IO_Zrn)2

=(9.0x10°N-m*/C?) (0.74)=3.0x10°N.

The angle that the force makes with the positive x -axis is

F,
p=tan”'| =X |=tan™ ﬂ =151.3°.
F,, —1++/2/4

Note there are two solutions to this equation. The second solution ¢ =28.7° is incorrect

because it would indicate that the force has positive i-and negative j-components.

For a system of N charges, the net force experienced by the ; th particle would be

N
F=)F,, (23.2)

=1
#J

where Fij denotes the force between particles i and j. The superposition principle

implies that the net force between any two charges is independent of the presence of
other charges. This is true if the charges are in fixed positions.

2.4 Electric Field

The electrostatic force, like the gravitational force, is a force that acts at a distance, even
when the objects are not in contact with one another. To justify such a notion we
rationalize action at a distance by saying that one charge creates a field that in turn acts
on the other charge.
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An electric charge ¢ produces an electric field everywhere. To quantify the strength of

the field created by that charge, we can measure the force a positive “test charge” ¢,

experiences at some point. The electric field E is defined as:

E = lim fe | (2.4.1)

900 qO

We take ¢, to be infinitesimally small so that the field g, generates does not disturb the

“source charges The analogy between the electric field and the gravitational field
g = lim F /' m, is depicted in Figure 2.4.1.

my—0

my, r q,

'
~

Figure 2.4.1 Analogy between the gravitational field g and the electric field E .

From the field theory point of view, we say that the charge ¢ creates an electric field E

that exerts a force Fe = qOE on a test charge g, .

Using the definition of electric field given in Eq. (2.4.1) and the Coulomb’s law, the
electric field at a distance » from a point charge ¢ is given by

E =L%f. (2.4.2)
dme, r

Using the superposition principle, the total electric field due to a group of charges is
equal to the vector sum of the electric fields of individual charges:

ZE r. (2.4.3)

47re

2.4.1 Electric Field of Point Charges
Figure 2.4.2 shows one frame of movies of the electric field of a moving positive and a

moving negative point charge, assuming the speed of the charge is small compared to the
speed of light.
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(a) (b)

Figure 2.4.2 The electric fields of (a) a moving positive charge, (b) a moving negative
charge, when the speed of the charge is small compared to the speed of light.

2.5 Electric Field Lines

Electric field lines provide a convenient graphical representation of the electric field in
space. The field lines for a stationary positive and a stationary negative charge are shown
in Figure 2.5.1.

(a) (b)
Figure 2.5.1 Field lines for (a) positive and (b) negative charges.
Notice that the direction of field lines is radially outward for a positive charge and

radially inward for a negative charge. For a pair of charges of equal magnitude but
opposite sign (an electric dipole), the field lines are shown in Figure 2.5.2.

Figure 2.5.2 Field lines for a finite electric dipole.
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https://youtu.be/RDK5AczWVSE
https://youtu.be/dEOyvbS7t3s

The pattern of electric field lines can be obtained by considering the following.
(1) Symmetry: for every point above the line joining the two charges there is an
equivalent point below it. Therefore, the pattern must be symmetrical about the line

joining the two charges.

(2) Near field: very close to a charge, the field due to that charge predominates.
Therefore, the lines are radial and spherically symmetric.

(3) Far field: far from the system of charges, the pattern should look like that of a single
point charge of value Q= Zl_Q[. Thus, the lines should be radially inward or outward,

unless 0=0.

(4) Null point: This is a point at which E =0, and no field lines should pass through it.
The properties of electric field lines may be summarized as follows:
* The direction of the electric field vector E at a point is tangent to the field lines.

* The field lines must begin on positive charges (or at infinity) and then terminate on
negative charges (or at infinity).

* The number of lines that originate from a positive charge or terminating on a negative
charge must be proportional to the magnitude of the charge.

* No two field lines can cross each other; otherwise the field would be pointing in two
different directions at the same point.
2.6 Force on a Charged Particle in an Electric Field

Consider a charge +¢ moving between two parallel plates of opposite charges, as shown
in Figure 2.6.1.

Figure 2.6.1 Charge moving in a constant electric field
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Let the electric field between the plates be E = —Eyj, with £, >0. (In Chapter 4, we

shall show that the electric field in the region between two infinitely large plates of
opposite charges is uniform.) The charge will experience a downward Coulomb force

F =4E. (2.6.1)

e

Note the distinction between the charge ¢ that is experiencing a force and the charges on
the plates that are the sources of the electric field. Even though the charge ¢ is also a
source of an electric field, by Newton’s third law, the charge cannot exert a force on

itself. In Figure 2.6.1 we draw only the electric field lines E due to the “source” charges.
This is the standard way the electric field is drawn in this situation in most introductory
textbooks (that is, we draw only the field lines of the source charges). That allows us to
write down the correct force, since the electric field of the charge experiencing the force
does not exert a force on the charge producing it, at least in a static situation, so one
might argue that there is no reason to show the total field. However, if we draw the field
this way, limiting ourselves to only the source field lines and not the total field lines, we
cannot understand the manner in which electric fields transmit forces, following Faraday,
as discussed in Section 1.1. To use Faraday’s powerful insight, we must draw the total
electric field, and we do this and discuss the meaning in Section 2.11.2 below.

In any case, according to Newton’s second law, this net force will cause the charge to
accelerate with an acceleration given by

_F E .
ao—e -1t __ 955 (2.6.2)
m m m

Suppose the particle is at rest (v, =0) when it is first released from the positive plate.
The final speed v of the particle as it strikes the negative plate is

1204E,
v, =y2la,|y= T, (2.6.3)

where y is the distance between the two plates. The kinetic energy of the particle when it
strikes the plate is

Kzémvj =qE,y. (2.6.4)

You might ask where the kinetic energy of the accelerating charge is coming from, and
also its momentum. As we discuss in more detail below, in Section 2.11.2, the kinetic
energy going into the charge is coming out of the electric energy stored in the total field
at the beginning of this configuration, so that total energy, kinetic plus field energy, is
conserved. The momentum of the charge, however, is coming from the momentum of
the source charges. That is, the downward momentum gained by the accelerating charge
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is offset by an upward momentum gained by the source charges, so that total momentum
is conserved, but in a different manner (field momentum is not involved).

2.7 Electric Dipole

An electric dipole consists of two equal but opposite charges, +¢g and —g, separated by a
distance 2a, as shown in Figure 2.7.1.

Figure 2.7.1 Electric dipole

By definition, the dipole moment vector p points from —g to +¢ (in the +y - direction)
and has magnitude p =2ga, where ¢ >0,

p=2qaj. (2.7.1)

For an overall charge-neutral system having N charges, the electric dipole vector p is
defined as

p= ‘ qr, (2.7.2)

where F, is the position vector of the charge g,. Examples of dipoles include HCL, CO,

H,O and other polar molecules. In principle, any molecule in which the centers of the
positive and negative charges do not coincide may be approximated as a dipole. In
Chapter 5 we shall also show that by applying an external field, an electric dipole
moment may also be induced in an unpolarized molecule.



2.7.1 The Electric Field of a Dipole

What is the electric field due to the electric dipole? Referring to Figure 2.7.1, we see that
the x -component of the electric field strength at the point P is

g [cos@, cosO | g X X
Ex:4 2 2 T4 5 12T, L2 |° (2.7.3)
ey T4 r TIE, [x +(y—a) ] [x +(y+a) ]
where
r=r’+a’F2racos@=x"+(yFa). (2.7.4)

Similarly, the y -component is

v, r

g [sin@, snb | ¢ y—a y+a
E)" = 4 2 - 2 - 4 2 ) 3/2 - ) 5 32 |* (2.7.5)
TE, €, [x +(y—a) ] [x +(y+a) ]

In the “point-dipole” limit where r > a, one may verify that (see Solved Problem 2.13.4)
the above expressions reduce to

E =P _sin6 cos (2.7.6)
4me,r
and
4 2
E = T(3cos"0-1), (2.7.7)
’ Admer

0

where sin@=x/r and cos@=y/r . With 3prcos@ =3p-r and some algebra, the
electric field may be written as

7

E(F) = ﬁ[—ﬁﬁﬂ} (2.7.8)

Note that Eq. (2.7.8) is valid also in three dimensions where r = xi+ yj+zﬁ. The

equation indicates that the electric field E due to a dipole decreases with » as 1/r°,
unlike the 1/7° behavior for a point charge. This is to be expected since the net charge of

a dipole is zero and therefore must fall off more rapidly than 1/7° at large distance. The

electric field lines due to a finite electric dipole and a point dipole are shown in Figure
2.7.2.
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|

Figure 2.7.2 Electric field lines for (a) a finite dipole and (b) a point dipole.

2.8 Dipole in Electric Field

What happens when we place an electric dipole in a uniform field E = E i, with the
dipole moment vector p making an angle with the x -axis?

=
4
+

Figure 2.8.1 Electric dipole placed in a uniform field.

From Figure 2.8.1, we see that the unit vector that points in the direction of p is
cosOi+sin® j . Thus, we have

P =2ga(cosOi+sin6j). (2.8.1)
As seen from Figure 2.8.1, because each charge experiences an equal but opposite force
due to the field, the net force on the dipole is F,, =F, +F_=0. Even though the net force

vanishes, the field exerts a torque a toque on the dipole. The torque about the mid-point
of the dipole is

T=F xF +F xF_=(acosfi+asindj)x(F i)+ (—acosOi—asinfj)x (—F i)
= asin® F_(-k) + asin8 F (-k) (2.8.2)
= 2aF sinO(-k),
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where we have used F, = F =F . The direction of the torque is —k , or into the page.
The effect of the torque T, is to rotate the dipole clockwise so that the dipole moment p

becomes aligned with the electric field E . With F = g¢E , the magnitude of the torque can

be rewritten as
T =2a(gE)sin0 =(2aq)Esin0 = pEsin@ ,

and the general expression for torque becomes

T=pxE. (2.8.3)

Thus, we see that the cross product of the dipole moment with the electric field is equal to
the torque.

2.8.1 Potential Energy of an Electric Dipole
The work done by the electric field to rotate the dipole by an angle 40 is

dW =—1d6 =—pEsin0de . (2.8.4)

The negative sign indicates that the torque opposes any increase in 6. Therefore, the total
amount of work done by the electric field to rotate the dipole from an angle 6, to 6 is

W= J:) (—pEsinB)dO = pE(cosf —cosb,). (2.8.5)

The result shows that a positive work is done by the field when cos€ >cos6,. The

change in potential energy AU of the dipole is the negative of the work done by the
field:

AU =U-U,=-W =-pE(cosf —cosb,), (2.8.6)

We shall choose our zero point for the potential energy when the angle between the
dipole moment and the electric field is 7/2, U(@=mn/2)=0. Then, when the dipole

moment is at an angle 6 with respect to the direction of the external electric field, we
define the potential energy function by

U©)=-pEcos®=—p-E,  where U(t/2)=0. (2.8.7)

A system is at a stable equilibrium when its potential energy is a minimum. This takes

place when the dipole p is aligned parallel to E, making U a minimum with
U, =-pE. On the other hand, when p and E are anti-parallel, U,  =+pE is a

maximum and the system is unstable.
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If the dipole is placed in a non-uniform field, there would be a net force on the dipole in
addition to the torque, and the resulting motion would be a combination of linear

acceleration and rotation. In Figure 2.8.2, suppose the electric field E+ at +¢ differs from

the electric field E_ at —g .

4 ¢,

i53(-*’—61 ) E(era)

lﬂl

Figure 2.8.2 Force on a dipole

Assuming the dipole to be very small, we expand the fields about x:
E (x+a)=E(x)+a aE , E(x—a)=E(x)—a aE . (2.8.8)
dx dx

The force on the dipole then becomes

F =q(E,-E )=2qa aE i=p daE ¥ (2.8.9)
dx dx

The attraction between small pieces of paper and a comb, which has been charged by
rubbing through hair, is an example of non-uniform electric field exerting a force on an
electric dipole. The paper has induced dipole moments (to be discussed in depth in
Chapter 5) while the field on the comb is non-uniform due to its irregular shape (Figure
2.8.3).

¥,

L e SN

4

<3
E 0 S et ?
oy +

X
\ )( \
\./ S—

Figure 2.8.3 Electrostatic attraction between a piece of paper and a comb

2.9 Charge Density

The electric field due to a small number of charged particles can readily be computed
using the superposition principle. But what happens if we have a very large number of
charges distributed in some region in space? Let’s consider the system shown in Figure
2.9.1:
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AE;
Figure 2.9.1 Electric field due to a small charge element Ag;, .

2.9.1 Volume Charge Density

Suppose we wish to find the electric field at some point P. Let’s consider a small
volume element AV, that contains an amount of charge Ag,. The distances between

charges within the volume element AV, are much smaller than compared to r, the
distance between AV, and P. In the limit where AV, becomes infinitesimally small, we
may define a volume charge density p(r) as

.. Ag, dq

The dimension of p(F) is charge/unit volume (C/m’) in SI units. The total amount of
charge within the entire volume V' is

0= Aq,=[pE)dV . (29.2)

The concept of charge density here is analogous to mass density p (¥). When a large
number of atoms are tightly packed within a volume, we can also take the continuum
limit and the mass of an object is given by

M = j p, (F)dV . (2.9.3)

2.9.2 Surface Charge Density

In a similar manner, the charge can be distributed over a surface S of area 4 with a
surface charge density o (lowercase Greek letter sigma):

G(I’) =, (2.94)
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The dimension of ¢ is charge/unit area (C/m*) in SI units. The total charge on the entire
surface is:

0=[[o()da. (2.9.5)

2.9.3 Line Charge Density

If the charge is distributed over a line of length ¢, then the linear charge density A
(lowercase Greek letter lambda) is

AF) =4 (2.9.6)

where the dimension of A is charge/unit length (C/m). The total charge is now an
integral over the entire length:

0= [ AB)ar. (2.9.7)

line

If charges are uniformly distributed throughout the region, the densities (p,o or A) then
become uniform.

2.10 Electric Fields due to Continuous Charge Distributions

The electric field at a point P due to each charge element dg is given by Coulomb’s
law,

1
4re,

dE = £, (2.10.1)

\:NL%.

where 7 is the distance from dg to P and t is the corresponding unit vector. (See

Figure 2.9.1). Using the superposition principle, the total electric field E is the vector
sum (integral) of all these infinitesimal contributions:

E=——|—¢. (2.10.2)

This is an example of a vecfor integral that consists of three separate integrations, one for
each component of the electric field.

Example 2.2: Electric Field on the Axis of a Rod

A non-conducting rod of length ¢ with a uniform positive charge density A and a total
charge Q is lying along the x -axis, as illustrated in Figure 2.10.1.
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dg=hdx'

dE |

Figure 2.10.1 Electric field of a wire along the axis of the wire

Calculate the electric field at a point P located along the axis of the rod and a distance
x, from one end.

Solution: The linear charge density is uniform and is given by A =Q/ ¢. The amount of
charge contained in a small segment of length dx’ is dg=Adx’.

The source carries a positive charge Q, the field at P points in the negative x - direction,

and #=—i is the unit vector that points from the source to P. Therefore the contribution
to the electric field due to dq is

1 dg 1 ﬂ;ccic (—i):— 1 Qdx';

dne, (X7

Integrating over the entire length leads to

i::Jdi::-LQIX"”"’—%}LQ[L-L}: L2 3 @103
X0 X

dme, x, x4+l ]  4me, x,(l+x,)

Notice that when P is very far away from the rod, x, > /, and the above expression
becomes

E:-L%i. (2.10.4)

The result is to be expected since at sufficiently far distance away, the distinction
between a continuous charge distribution and a point charge diminishes.
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Example 2.3 Electric Field on the Perpendicular Bisector

A non-conducting rod of length ¢ with a uniform charge density A and a total charge Q
is lying along the x -axis, as illustrated in Figure 2.10.2. Compute the electric field at a
point P, located at a distance y from the center of the rod along its perpendicular
bisector.

Figure 2.10.2

Solution: We follow a similar procedure as that outlined in Example 2.2. The

contribution to the electric field from a small length element dx’ carrying charge
dg = Adx’

JE = 1 ﬁ_ 1 Adx

= = ) 2.10.5
dre, r? Ame, X7+ )7 ( )

Using symmetry argument illustrated in Figure 2.10.3, one may show that the x -
component of the electric field vanishes.
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Figure 2.10.3 Symmetry argument showing that £ =0.
The y-component of dE is

1 Adx y 1 Aydx’

dE, =dE cos6 = o — = yoR—
dme, X7+ y° (X +yr 4ng, (X +y7)

(2.10.6)

3/2 °

By integrating over the entire length, the y -component of the electric field due to the rod
is
(/2

L[ Ay (2.10.7)

Ey z,[dEy - 4me, J-112 (x'z +y2)3/2 - 47[8 J//z (x'2 +y )3/2 :
By making the change of variable: x'= ytan6’, which gives dx’= ysec’8’d@’, the
above integral becomes

o ysec’0'do’ 1 (o sec’0’do’ 1 6 sec’0’do’
.[ 12 (12 3/2 _J ’ 32 J: 2 2 _2J.7 3
x4y ) 63’ (tan> @’ +1) f(tan" 0" +1) y° -9 secH

—I a4 =?J._ecos0’d6':2sme.

6sech’ y?

(2.10.8)

Thus the y -component of the electric field is

£ - 1 2/lsm9: 1 % /2 . (2.109)

bo4me, y ame, v \Jy* +(0/2)

In the limit where y > /, the above expression reduces to the “point-charge” limit:
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1 2A40/2_ 1 A_ 1 Q

E = — = . 2.10.10
Y odme, y oy Ame, y©  Ame, ) ( )
On the other hand, when /> y, we have
E = ! 2 (2.10.11)
Y 4rme, y

In this infinite length limit, the system has cylindrical symmetry. In this case, an
alternative approach based on Gauss’s law can be used to obtain Eq. (2.10.11), as we

shall show in Chapter 4. The characteristic behavior of £ / E, (with E, =Q/ 4re,l*) as

a function of y// is shown in Figure 2.10.4.
Ey/Eq

10

Figure 2.10.4 Electric field of a non-conducting rod as a function of y//.

Example 2.4: Electric Field on the Axis of a Ring

A non-conducting ring of radius R with a uniform charge density A and a total charge
Q is lying in the xy - plane, as shown in Figure 2.10.5. Compute the electric field at a

point P, located at a distance z from the center of the ring along its axis of symmetry.
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- dg
Figure 2.10.5 Electric field at P due to the charge element dg .

Solution:

Consider a small length element d¢’ on the ring.

dE “

dE
P
v
”
dg
> )
o' R
Y dg
Figure 2.10.6

The amount of charge contained within this element is dg=Ad{'=ARd¢" . TIts
contribution to the electric field at P is

! d—?f-=L)‘R§l¢ r. (2.10.12)
dme, r dme, r

dE =

Using the symmetry argument illustrated in Figure 2.10.6, we see that the electric field at
P must point in the +z —direction. The z-component of the electric field is given by

1 ARdY =z A Rzdy’

dE. =dE cos0 = = .
: dne, RP+2° JR* +7*  4me, (R +2°)"

(2.10.13)
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Upon integrating over the entire ring, we obtain

A Rz 7 A 27Rz 1 0z

@ 47(780 (R2 +22)3/2 :’; (b N 471'80 (R2 +Z2)3/2 - 471'80 (RZ +Zz)3/2 ’

(2.10.14)

where the total charge is Q = A(2wR). A plot of the electric field as a function of z is
given in Figure 2.10.7.

E,/Ey

0.4

Figure 2.10.7 Electric field along the axis of symmetry of a non-conducting ring of
radius R, with E, =Q/4re,R*.

Notice that the electric field at the center of the ring vanishes. This is to be expected from
symmetry arguments.

Example 2.5: Electric Field Due to a Uniformly Charged Disk

A uniformly charged disk of radius R with a total charge Q lies in the xy-plane. Find

the electric field at a point P, along the z-axis that passes through the center of the disk
perpendicular to its plane. What are the limits when z >> R and when R >>z?

Solution: By treating the disk as a set of concentric uniformly charged rings, the problem

could be solved by using the result obtained in Example 2.4. Consider a ring of radius 7’
and thickness dr’, as shown in Figure 2.10.8.

2-23



))

X
Figure 2.10.8 A uniformly charged disk of radius R.

By symmetry arguments, the electric field at P points in the +z -direction. Since the ring
has a charge dq=0Q2nr’ dr’), from Eq. (2.10.14), we see that the ring gives a

contribution to the z-component of the electric field

1 zdq 1 zQmor' dr’)
dre, (7 +2°)"7  dme, (P +27)7

dE

V4

(2.10.15)

Integrating from »'=0 to " =R, the z-component of the electric field at P becomes

2 R2 +Z2

oz JR r'dr’ oz J‘RZHZ du oz u

E =|dE = = =
: J P 2g, 00 (P42 dgl7 WP g (-1/2)

2
z

(2.10.16)

__0z 1l 1y ojz — z
2, VR +2 V=) 2g|lzl JRez)

The above equation may be rewritten as

0{1— z } >0
2‘90 \/ZZ+R2’

E = . (2.10.17)
i{—l—;} 2<0
280 \/Zz+R2 ’

The plot of E, / E, as a function of z/R is shown in Figure 2.10.9, where E, =0/ 2¢,.
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<0.5

Figure 2.10.9 Electric field of a non-conducting plane of uniform charge density.

To show that the “point-charge” limit is recovered for z >> R, we make use of the
Taylor-series expansion:

R —1/2 1 R 1 R?
1— z :1_{1+_] :1_[1___+...jz——, (21018)

N2+ R?
The z-component of the electric field is then

c R _ 1 onR?_ 1 Q
2¢, 22" 4me, z ?

2

, (2.10.19)

z

4re, z

which is indeed the expected “point-charge” result. On the other hand, we may also
consider the limit where R >> z. Physically this means that the plane is very large, or the
field point P is extremely close to the surface of the plane. The electric field in this limit
becomes, in unit-vector notation,

if{, z>0
_ 2¢,
E= . (2.10.20)
—if(, z<0
2¢g,

The plot of the electric field in this limit is shown in Figure 2.10.10.

2-25



9
2¢,

Figure 2.10.10 Electric field of an infinitely large non-conducting plane.

Notice the discontinuity in electric field as we cross the plane. The discontinuity is given
by
AE =E,-E =2 |- 9 |22 (2.10.21)
2¢, 2e, | &,

As we shall see in Chapter 4, if a given surface has a charge density o, then the normal
component of the electric field across that surface always exhibits a discontinuity with
AE =o0/¢g,.

2.11 Rubber Bands and Strings and the Forces Transmitted by Electric Fields

We now return to our considerations in Section 1.1.2, where we asserted that depictions
of the total field, that is the field due to all objects being considered, allows profound
insight into the mechanisms whereby fields transmit forces. The stresses transmitted by
electromagnetic fields can be understood as analogous to the forces transmitted by rubber
bands and strings, but to reach this understanding we must show a representation of the
total field, as we do in the four examples following. The examples below show you how
Faraday, the father of field theory, understood how his “lines of force” picture explained
Coulomb’s Law at a more fundamental level than simply stating it, as we did in Equation

2.2.1).

2.11.1 Charge in the Field of a Van de Graaff Movies

Consider Figure 2.11.1(a) below. The figure illustrates the repulsive force transmitted
between two objects by their electric fields. The system consists of a charged metal
sphere of a van de Graaff generator. This sphere is fixed in space and is not free to move.
The other object is a small charged sphere with charge of the same sign, that is free to
move (we neglect the force of gravity on this sphere). According to Coulomb’s law,
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these two like charges repel each other. That is, the small sphere experiences a repulsive
force away from the van de Graaff sphere.

(a) (b)

Figure 2.11.1 (a) Two charges of the same sign that repel one another because of the
“stresses” transmitted by electric fields. We use both the “grass seeds” representation
and the “field lines” representation of the electric field of the two charges. (b) Two
charges of opposite sign that attract one another because of the stresses transmitted by
electric fields.

The movie linked to the Figure 2.11.1(a) above depicts the motion of the small sphere
and of the electric fields in this situation, where the motion of the electric field in in the
direction of E x B, the direction of electromagnetic energy flow. Note that to repeat the
motion of the small sphere in the animation, we have the small sphere “bounce off” of a
small plastic square fixed in space some distance from the van de Graaff generator.

Before we discuss this further, consider Figure 2.11.1(b), which shows one frame of a
movie of the interaction of two charges with opposite signs. Here the charge on the small
sphere is opposite to that on the van de Graaff sphere. By Coulomb’s law, the two objects
now attract one another, and the small sphere feels a force attracting it toward the van de
Graaff. To repeat the motion of the small sphere in the animation, we have that charge
“bounce off” of a plastic square fixed in space near the van de Graaff.

The point of these two movies is to underscore the fact that the Coulomb force between
the two charges is not “action at a distance.” Rather, as we outlined in Section 1.1, the
stress is transmitted by direct “contact” from the charges on the van de Graaff to the
immediately surrounding space, via the electric field of the charge on the van de Graaff.
That stress is then transmitted from one element of space to a neighboring element, in a
continuous manner, until it is transmitted to the region of space contiguous to the small
sphere, and thus ultimately to the small sphere itself. Although the two spheres are not in
direct contact with one another, they are in direct contact with a medium or mechanism
that exists between them. The force between the small sphere and the van de Graaff is
transmitted (at a finite speed, the speed of light) by stresses induced in the intervening
space by the fact that they are charged.
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2.11.2 Charged Particle Moving in a Constant Electric Field Movie

As another example of the stresses transmitted by electric fields, and of the interchange
of energy between fields and particles, consider a positive electric charge g >0 moving

in a constant electric field.

Suppose the charge is initially moving upward along the positive z-axis in a constant
background fieldE = —Eoﬁ . Since the charge experiences a constant downward force

Fe =g¢E = —quﬁ , it eventually comes to rest (say, at the origin z = 0), and then moves

back down the negative z-axis. This motion and the fields that accompany it are shown
in Figure 2.11.2, at two different times.

(a) (b)

Figure 2.11.2 A positive charge moving in a constant electric field which points
downward. (a) The total field configuration when the charge is still out of sight on the
negative z-axis. (b) The total field configuration when the charge comes to rest at the
origin, before it moves back down the negative z-axis.

How do we interpret the motion of the charge in terms of the stresses transmitted by the
fields? Faraday would have described the downward force on the charge in Figure
2.11.2(b) as follows. Let the charge be surrounded by an imaginary sphere centered on it,
as shown in Figure 2.11.3. The field lines piercing the lower half of the sphere transmit a
tension that is parallel to the field. This is a stress pulling downward on the charge from
below. The field lines draped over the top of the imaginary sphere transmit a pressure
perpendicular to themselves. This is a stress pushing down on the charge from above. The
total effect of these stresses is a net downward force on the charge.
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A

Figure 2.11.3 An electric charge in a constant downward electric field. We enclose the
charge in an imaginary sphere in order to discuss the stresses transmitted across the
surface of that sphere by the electric field.

Viewing the movie associated with Figure 2.11.2 greatly enhances Faraday’s
interpretation of the stresses in the static image. As the charge moves upward, it is
apparent in the movie that the electric field lines are generally compressed above the
charge and stretched below the charge. This field configuration enables the transmission
of a downward force to the moving charge we can see as well as an upward force to the
charges that produce the constant field, which we cannot see. The overall appearance of
the upward motion of the charge through the electric field is that of a point being forced
into a resisting medium, with stresses arising in that medium as a result of that
encroachment.

The kinetic energy of the upwardly moving charge is decreasing as more and more
energy is stored in the compressed electrostatic field, and conversely when the charge is
moving downward. Moreover, because the field line motion in the movie is in the
direction of the energy flow, as we discussed in Section 1.8.4, we can explicitly see the
electromagnetic energy flow away from the charge into the surrounding field when the
charge is slowing. Conversely, we see the electromagnetic energy flow back to the charge
from the surrounding field when the charge is being accelerated back down the z-axis by
the energy released from the field. The kinetic energy of the charge is flowing into the
energy density of the local electric field when it is slowing, and vice versa when it is
accelerating.

Finally, consider momentum conservation. The moving charge in the animation of
Figure 2.11.2 completely reverses its direction of motion over the course of the
animation. How do we conserve momentum in this process? Momentum is conserved
because momentum in the positive z-direction is transmitted from the moving charge to
the charges that are generating the constant downward electric field (not shown). This is
plausible from the field configuration shown in Figure 2.11.2(b). The field stress, which
pushes downward on the charge, is accompanied by a stress pushing upward on the
charges generating the constant field.
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2.11.3 Charged Particle at Rest in a Time-Varying Electric Field Movie
As a third example of the stresses transmitted by electric fields, consider a positive point

charge fixed at rest at the origin in an external field that is constant in space but varies in
time. This external field is uniform but non-constant and varies according to the equation

E=-E sin4[—Jﬁ. (2.11.1)

o)

Figure 2.11.4 Two frames of a movie of the electric field around a positive charge fixed
at rest in a time-changing electric field that points downward. The orange vector is the
electric field and the lighter-colered vector is the force on the point charge.

Figure 2.11.4 shows two frames of a movie of the total electric field configuration for this
situation. Figure 2.11.4(a) is at ¢ = 0, when the vertical electric field is zero. Frame
2.11.4(b) is at a quarter period later, when the downward electric field is at a maximum.
As in Figure 2.11.3 above, we interpret the field configuration in Figure 2.11.4(b) as
indicating a net downward force on the stationary charge. The motion of the field lines in
the movie associated with Figure 2.11.4, which is in the direction of the electromagnetic
energy flow (see Section 1.8.4), shows the dramatic inflow of energy into the
neighborhood of the charge as the external electric field grows in time, with a resulting
build-up of stress that transmits a downward force to the positive charge.

We can estimate the magnitude of the force on the charge in Figure 2.11.4(b) as follows.
At the time shown in Figure 2.11.4(b), the distance 7, above the charge at which the

electric field of the charge is equal and opposite to the constant electric field is
determined by the equation

q
Ey= s (2.11.2)
77,'801”0

The surface area of a sphere of this radius is 4 =4rx r02 =q/¢g,E,. InSection 3.4 of
Chapter 3, Eq. (3.4.8), we show that the pressure (force per unit area) and/or tension

transmitted across the surface of this sphere surrounding the charge is of the order of
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) * /2. Because the electric field on the surface of the sphere is of order E,, the total

force transmitted by the field is of order SOEO2 /2 times the area of the sphere, or
(¢,E," | 2)(4nr))=(¢,E,’ | 2)(q/ € ,E,) = qE,,

as we expect.

Of course this downward net force is a combination of a pressure pushing down on the
top of the sphere and a tension pulling down across the bottom of the sphere. However,
the rough estimate that we have just made demonstrates that the pressures and tensions
transmitted across the surface of this sphere surrounding the charge are plausibly of order

gE* /2.
2.11.4 Like and Unlike Charges Hanging from Pendulums Movies
Consider two charges hanging from pendulums whose supports can be moved closer or

further apart by an external agent. First, suppose the charges both have the same sign,
and therefore repel.

link8

Figure 2.11.5 Two pendulums from which are suspended charges of the same sign. We
artificially terminate the field lines at a fixed distance from the charges to avoid visual
confusion

Figure 2.11.5 shows the situation when an external agent tries to move the supports (from
which the two positive charges are suspended) together. The force of gravity is pulling
the charges down, and the force of electrostatic repulsion is pushing them apart on the
radial line joining them. The behavior of the electric fields in this situation is an example
of an electrostatic pressure transmitted perpendicular to the field. That pressure tries to
keep the two charges apart in this situation, as the external agent controlling the
pendulum supports tries to move them together. When we move the supports together the
charges are pushed apart by the pressure transmitted perpendicular to the electric field.

In contrast, suppose the charges are of opposite signs, and therefore attract. Figure 2.11.6
shows the situation when an external agent moves the supports (from which the two
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charges are suspended) together. The force of gravity is pulling the charges down, and
the force of electrostatic attraction is pulling them together on the radial line joining
them. The behavior of the electric fields in this situation is an example of the tension
transmitted parallel to the field. That tension tries to pull the two unlike charges together
in this situation.

link9

Figure 2.11.6 Two pendulums with suspended charges of opposite sign.

When we move the supports together the unlike charges are pulled together by the
tension transmitted parallel to the electric field. We artificially terminate the field lines at
a fixed distance from the charges to avoid visual confusion.

2.11.5 Pressures and Tensions Transmitted by Electric Fields

Let us move from these specific examples to a more general discussion of how Faraday
understood the forces transmitted by fields (see also Section 1.1). To do this, we consider
a more general case where a closed surface (an imaginary box) is placed in an electric
field, as shown in Figure 2.11.7.

If we look at the top face of the imaginary box, there is an electric field pointing in the
outward normal direction of that face. From Faraday’s field theory perspective, we would
say that the field on that face transmits a tension along itself across the face, thereby
resulting in an upward pull, just as if we had attached a string under tension to that face
to pull it upward. Similarly, if we look at the bottom face of the imaginary box, the field
on that face is anti-parallel to the outward normal of the face, and according to Faraday’s
interpretation, we would again say that the field on the bottom face transmits a tension
along itself, giving rise to a downward pull, just as if a string has been attached to that
face to pull it downward. Note that this is a pull parallel to the outward normal of the
bottom face, regardless of whether the field is into the surface or out of the surface.

If we want to know the total electric force transmitted to the interior of this imaginary
box in the up-down direction, we add these two transmitted stresses. If the electric field is
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homogeneous, the total force transmitted to the interior of the box in the up-down
direction is a pull upward plus an equal and opposite pull downward, and adds to zero.

In contrast, if the top of this imaginary box is sitting inside a capacitor, for which the
electric field is vertical and constant, and the bottom is sitting inside one of the plates of
the capacitor, where the electric field is zero, then there is a net pull upward, and we say
that the electric field exerts a upward tension on the plates of the capacitor. We can
deduce this by simply looking at the shape of the total electric field. A quantitative
calculation of the tension transmitted by electric fields in this example is presented in
Section 3.4, see Eq. (3.4.8).

For the left side of the imaginary box, the field on that face is perpendicular to the
outward normal of that face, and Faraday would have said that the field on that face
transmits a pressure perpendicular to itself, causing a push to the right. Similarly, for the
right side of the imaginary box, the field on that face is perpendicular to the outward
normal of the face, and the field would transmit a pressure perpendicular to itself. In this
case, there is a push to the /eft.

surface of the imaginary box by the field, either
pressures (on the left or right faces of the box) or

Figure 2.11.7 An imaginary blue box in an electric —
field (long orange vectors). The short gray vectors
indicate the directions of stresses transmitted across the
. e
tensions (on the top and bottom faces of the box). ?

Note that the term “tension” is used when the stress transmitted by the field is parallel (or
anti-parallel) to the outward normal of the surface, and “pressure” when it is
perpendicular to the outward normal. The magnitude of these pressures and tensions on

the various faces of the imaginary surface in Figure 2.11.7 is given by ¢ E * /2 for the

electric field. This quantity has units of force per unit area, or pressure. It is also the
energy density stored in the electric field since energy per unit volume has the same units
as pressure (see Section 5.3).
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2.12 Summary

The electric force exerted by a charge g, on a second charge g, is given by
Coulomb’s law:

F o=k qlsz.= 1 qlsz.’
r dre, r
where

k, = ! =8.99x10" N-m*/C’
4re,

1s the Coulomb constant.

The electric field at a point in space is defined as the electric force acting on a test
charge g, divided by g,,:

The electric field at a distance » from a charge g is

B 45
4re, r

Using the superposition principle, the electric field due to a collection of point
charges, each having charge ¢, and located at a distance 7, away is

An electric dipole consists of two equal but opposite charges. The electric dipole
moment vector p points from the negative charge to the positive charge, and has a

magnitude
p=2aq.

The torque acting on an electric dipole places in a uniform electric field E is
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T=pxE.

* The potential energy of an electric dipole in a uniform external electric field E is

—

U=-p-E.
* The electric field at a point in space due to a continuous charge element dg is

1 dqg.
——T.

dE =
dre, r

* At sufficiently far away from a continuous charge distribution of finite extent, the
electric field approaches the “point-charge” limit.

* As discussed in Section 1.1.2, if we look at the shape of electric field lines for the
total electric field, as Faraday did, the electric forces transmitted by fields can be
understood at a more fundamental level by analogy to the more familiar forces
exerted by strings and rubber bands.

2.13 Problem-Solving Strategies

In this chapter, we have discussed how electric field can be calculated for both the
discrete and continuous charge distributions. For the former, we apply the superposition
principle:
E=L Y9y
dre, Tr;

l

For the latter, we must evaluate the vector integral

E=_ L [ %
dre, 7 r

where 7 is the distance from dq to the field point P and f is the corresponding unit
vector. To complete the integration, we shall follow the procedures outlined below:

.

(1) Start with dE=—1 :
dre, r

(2) Rewrite the charge element dg as
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Adl (length)
dg=<0dA (area)
pdV (volume)

depending on whether the charge is distributed over a length, an area, or a volume.

(3) Substitute dg into the expression for dE .

(4) Specify an appropriate coordinate system (Cartesian, cylindrical or spherical) and
express the differential element (d/, dA, or dV') and r in terms of the coordinates

(see Table 2.1 below for summary.)

Cartesian (x, y, z) Cylindrical (p, ¢, z) Spherical (7, 6, ¢)
dl dx, dy, dz dp, pd¢, dz dr, rd@, rsin@dgo
dA | dxdy, dydz, dzdx | dpdz, pdddz, pdpdp | rdrd@, rsin@drdg, r’sinfd0de
dv dxdydz pdpdodz r*sin@drd0 d¢

Table 2.1 Differential elements of length, area and volume in different coordinates

(5) Rewrite dE in terms of the integration variable(s), and apply symmetry argument to
identify non-vanishing component(s) of the electric field.

(6) Complete the integration to obtain E.

In the Table below we illustrate how the above methodologies can be utilized to compute
the electric field for an infinite line charge, a ring of charge and a uniformly charged disk.
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Ring of charge

Uniformly charged disk

Line charge

y

z dE
1P
Figure 5 N
7‘ o dx

b4
(2) Express dq in
terms of charge dg = Adx’ dg=Ad/l dg=0dA
density

Adx’ Adl odA
(3) Write down dE dE =k,—; dE =k,—; dE =k,—;
r r r
(4) Rewrite r and the dx dl=Rd¢’ dA=2rr'dr'
differential element Yy z
in terms of the cosf = " cosf =— cosf =—
appropriate r r
coordinates F=yx?+y =R+ 22 P BC I
(5) Apply symmetry dE, =dE cos6 dE_=dE cos6 dE_=dE cos0
spmen o ity | Sk | e
component(s) of dE ()" C(R*+2°)? N GEE2 i
2 dx E k R/IZ qu)’ /d ’
+/ = . R r dr
Ey = keﬂ,y-[m —(x2 +y2)3/2 (R +2%)" ) E = 27‘6()'keZJ.O —(}/z e
2T RA
(6) Integrate to get £ _2k,A 012 . (;f 2);/2 _— [ z z ]
= +z =210k, | — - ———
v oJery +y 0 EIRENYE
z

2.14 Solved Problems

2.14.1 Hydrogen Atom

In the classical model of the hydrogen atom, the electron revolves around the proton with

a radius of » =5.3x10""'m . The magnitude of the charge of the electron and proton is

e=1.6x10"C.
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(a) What is the magnitude of the electric force between the proton and the electron?
(b) What is the magnitude of the electric field due to the proton at » ?

(c) What is ratio of the magnitudes of the electrical and gravitational force between
electron and proton? Does the result depend on the distance between the proton and the

electron? The mass of the electron is m, =9.1x 107'kg and the mass of the proton is

m, =1.7x10"kg.

(d) In light of your calculation in (b), explain why electrical forces do not influence the
motion of planets.

Solutions:

(a) The magnitude of the force is given by

2
F=—
4me, r

Now we can substitute our numerical values and find that the magnitude of the force
between the proton and the electron in the hydrogen atom is

5 _O0xICN-m*/C*)(1.6x10" C)

. 22 =8.2x10°N.,
(5.3x107"'m)

(b) The magnitude of the electric field due to the proton is given by

IN . a2 /(2 -19
=t 4 OOAONmM/CILOXI0C) 76, 101N/c.
4me, r (0.5x107 " m)

(c) The ratio of the magnitudes of the electric and gravitational force is given by
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( 1 ezJ 1,
e o
dre, r _A4me,

j/=[ mmJ_Gmm_
G- p e

2
r

(9.0x10°N-m*/C*)(1.6x107" C)?

= =T 2 ho2 27 S =2.2%107
(6.67x107 ' N-m”/kg")(1.7x107"kg)(9.1x107 kg)

3

This ratio is independent of 7, the distance between the proton and the electron.

(d) The electric force is 39 orders of magnitude stronger than the gravitational force
between the electron and the proton. Why do the gravitational forces and not the
electrical forces determine the large-scale motions of planets? The answer is that the
magnitudes of the charge of the electron and proton are equal. The best experiments show

that the difference between these magnitudes is a number on the order of 107*. Since
objects like planets have essentially the same number of protons as electrons, they are
electrically neutral. Therefore the force between planets is entirely determined by gravity.

2.14.2 Millikan Oil-Drop Experiment

An oil drop of radius R=1.64x10°m and mass density p  =8.51x10’ kg/m3 is
p oil

allowed to fall from rest and then enters into a region of constant external field E applied
in the downward direction. The oil drop has an unknown electric charge g (due to

irradiation by bursts of X-rays). The magnitude of the electric field is adjusted until the
gravitational force Fg on the oil drop is exactly balanced by the electric force,

Fe. Suppose  this  balancing  occurs  when  the electric field is
E=-E, j=—(1.92x10°N/C)j, with E, =1.92x10° N/C.

(a) What is the mass of the oil drop?
(b) What is the charge Q on the oil drop in units of electronic charge e=1.6x107""C?
Solutions:

(a) Assume that the oil drop is a sphere of radius R with volume ¥ = (4/3)zR’. Then
the mass M of the oil drop is
M=p.V=p. (43R

Now we can substitute our numerical values into our symbolic expression for the mass,
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M =p (4 /3R’ = (8.51x10°kg/m*)(47 / 3)(1.64x 10° m)’ =1.57x 10" *kg .

(b) The oil drop will be in static equilibrium when the gravitational force exactly balances
the electrical force: Fg +F,=0. Since the gravitational force points downward, the

electric force on the oil must be upward. Using our force laws, we have
0=Mg+0E = Mg=—-QE .

With the electrical field pointing downward, we conclude that the charge on the oil drop
must be negative. Notice that we have chosen the unit vector j to point upward. We can
solve this equation for the charge on the oil drop:

M; 1.57 x10™*kg)(9.80 :
o=-Me_ (STxI0 kQOSM/S) _ ¢35 100c,
E 1.92x10°N/C

y

Since the electron has charge e=1.6x10"""C, the charge of the oil drop in units of e is

0 802x107°C

e 1.6x10°C

You may at first be surprised that this number is an integer, but the Millikan oil drop
experiment was the first direct experimental evidence that charge is quantized. Thus,
from the given data we can assert that there are five electrons on the oil drop!

2.14.3 Charge Moving Perpendicularly to an Electric Field

An electron is injected horizontally into a uniform field produced by two oppositely

charged plates, as shown in Figure 2.14.1. The particle has an initial velocity v, =v, i

perpendicular to E .
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Figure 2.14.1 Charge moving perpendicular to an electric field
(a) While between the plates, what is the force on the electron?

(b) What is the acceleration of the electron when it is between the plates?

(c) The plates have length L, in the x -direction. At what time ¢, will the electron leave
the plate?

(d) Suppose the electron enters the electric field at time # = 0. What is the velocity of the
electron at time 7, when it leaves the plates?

(e) What is the vertical displacement of the electron after time 7 when it leaves the
plates?

(f) What angle 6, does the electron make with the horizontal, when the electron leaves

the plates at time ¢ ?

(g) The electron hits the screen located a distance L, from the end of the plates at a time
t,. What is the total vertical displacement of the electron from time ¢ =0 until it hits the

screen at 7, ?

Solutions:

(a) Since the electron has a negative charge, ¢ = —e, the force on the electron is

F. = qE = —eE = (—e)(—Ey)j =ek, j .
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where the electric field is written as E = —Ey j , with £ ,>0. The force on the electron is

upward. Note that the motion of the electron is analogous to the motion of a mass that is
thrown horizontally in a uniform gravitation field. The mass follows a parabolic
trajectory downward. Since the electron is negatively charged, the constant force on the
electron is upward and the electron will be deflected upwards on a parabolic path.

(b) The acceleration of the electron is

and its direction is upward.

(c) The time of passage for the electron is given by ¢, =L /v,. The time ¢ is not

affected by the acceleration because v, the horizontal component of the velocity which
determines the time, is not affected by the field.

(d) The electron has an initial horizontal velocity, v, =v, i. Since the acceleration of the
electron is in the positive y -direction, only the y-component of the velocity changes.
The velocity at a later time ¢, is given by

- 2 A 2 1 » [€E, ) - : [eEL ),
V=v ity J=vi+a, b J=v, 1+ 7 L]=Vv,1+ " ]

Vo

(e) From the figure, we see that the electron travels a horizontal distance L, in the time

t, =L, /v, and then emerges from the plates with a vertical displacement

2
1 ) leEy L
——atP=—| |2,
yl2y1 2£m][vo

(f) When the electron leaves the plates at timez,, the electron makes an angle 6, with the
horizontal given by the ratio of the components of its velocity,

ang= b= B /ML Iv) _eE, L
k o mv,

X

(g) After the electron leaves the plate, there is no longer any force on the electron so it
travels in a straight path. The deflection y, is
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¢E, LL,

v, =L,tan6, = >
my,
and the total deflection becomes
1eE, L’ eE LL, eE L (1
=y ty,=—">""+—"2 =——|—L+L, |
YENT 2 mvo2 mv02 mvo2 2 g

2.14.4 Electric Field of a Dipole
Consider the electric dipole moment shown in Figure 2.7.1.

(a) Show that the electric field of the dipole in the limit where » >> a is

3
E = p3sin90059, E = P +(3cos’6 - 1)
Y Ameyr ’ 4rer

0

where sin@=x/r and cos@ =y/r.

(b) Show that the above expression for the electric field can also be written in terms of
the polar coordinates as

E(r,0)=E ¢+ E,0

where

_ 2pcos6 E, = psinf

E

r

dre,r dre,r’ |

Solutions:

(a) Let’s compute the electric field strength at a distance » >> a due to the dipole. The
x -component of the electric field strength at the point P with Cartesian coordinates
(x,,0) is given by

r, r

g [cosB, cosO | g x x
Ex_4 2 2 T4 ) 12T, 5,732
TE, i€, [x +(y—a) ] [x +(y+a) ]
where
r=r’+a’F2racos@=x"+(yFa).

Similarly, the y -component is given by
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y = 4me, | 7 2 y2 - Are, [xz +(y-a) :|3/2 - I:xz F(y+a) :|3/2

g -4 [sin&_sin@_} q y—a y+a
We shall make a polynomial expansion for the electric field using the Taylor-series
expansion. We will then collect terms that are proportional to 1/7° and ignore terms that

are proportional to 1/7°, where = (x* + y*)"*. We begin with

2

2 -3/2
a *2ay
— .

(x2 +(y=x a!)z)’y2 = (x2 + y2 +a’+ 2ay)’3/2 = r{l +

In the limit where r >> a, we use the Taylor-series expansion with s = (a” + 2ay) / r*:

(1+s)°7 = 1—§s+Es2 — e
2 8

The above equations for the components of the electric field becomes

g -4 6xya+
* 47r.£-30 P
and
2a 6y
p o4 [ 20 0a)
Y 47r80 r r

where we have neglected the terms of order equal to and greater than s* (all the terms of
order s> and higher are denoted by the symbol O(s*)). The electric field can then be
written as

L e 2a; 6bya, : - 3yxo (3y1 )
E=Ei+Ej=—1|-Z2j+ 22 ity |= 2| 220+ 2 -1 |j,
YU Ame, | v r r

where we have made used of the definition of the magnitude of the electric dipole
moment p = 2aq .

In terms of polar coordinates, with sin@=x/r and cos@ = y/r, (as seen from Figure
2.14.4), we obtain the desired results:
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(3cos’ 0 —1)|.

3 )
E = P 5 sinfcosf, E = ;
Y Amer 7

47reor

(b) We begin with the expression obtained in (a) for the electric dipole in Cartesian
coordinates:
p

E(F’Q) B Awe v
0

3

[3sin90059§ +(3cos’ 0 — l)ﬂ.

With a little algebra, the above expression may be rewritten as

. [20050(sin0§ + cost) +sinfcosOi + (cos’ @ — l)ﬂ

E(r0) = P

e,;r

. 3 [2cose(sinei + cos@j) + sinO(cosQi — sinej)},
Ame,r

where we used the trigonometric identity (cos*8 — 1) = —sin> 6. Because the unit vectors

r and O in polar coordinates can be decomposed as

I =sinfi+cosfj

0 = cos@i— sinej ,

the electric field in polar coordinates is given by

E(r,0) = [20059? + sineé] :

3

47t80r

The magnitude of E is
E=(E+E)"? =—L _(3cos0+1)".
4re r

0

2.14.5 Electric Field of an Arc

A thin rod with a uniform charge per unit length A is bent into the shape of an arc of a
circle of radius R. The arc subtends a total angle 26,, symmetric about the x -axis, as

shown in Figure 2.14.2. What is the electric field E at the origin O?

Solution: Consider a differential element of length d/ = Rd6, which makes an angle 0

with the x-axis, as shown in Figure 2.14.2(b). The amount of charge it carries is
dq=Adl=ARdO . The contribution to the electric field at O is
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L dg;_ 1 dg 1 Ad6

dE = ———( cosel—smej)———( cosel—smej)
4re, 1’ 4re, R 4dre, R
) y
R
R -~ Rd6
: X [
(@ 6, : '
dE &%
R R
(a) (b)

Figure 2.14.2 (a) Geometry of charged source. (b) Charge element dg

Integrating over the angle from -6, to +6,, we have

E=—— 1 1 2Asing, ;
E= _J d9( COSQ]_SmeJ)———( COSOl—smOJ) ———&i.
Ame, R 4re, -6, 4re, R

We see that the electric field only has the x -component, as required by a symmetry
argument. If we take the limit 6, — 7, the arc becomes a circular ring. Since sinz =0,
the equation above implies that the electric field at the center of a non-conducting ring is
zero. This is to be expected from symmetry arguments. On the other hand, for very small
6,, sinf, = 6, and we recover the point-charge limit:

G__ 1 26 1 20R. 1 0
4ne, R 4re, R’ 4me, R

where the charge on the arc is O = A/ = A(2R0,).

2.14.6 Electric Field Off the Axis of a Finite Rod
A non-conducting rod of length ¢ with a uniform charge density A and charge Q is

lying along the x -axis, as illustrated in Figure 2.14.3. Compute the electric field at a
point P, located at a distance y off the axis of the rod.
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V L 6,

Figure 2.14.3

by the element is dgq = A dx’.

Solution: The problem can be solved by following the procedure used in Example 2.3
Consider a length element dx” on the rod, as shown in Figure 2.13.4. The charge carried

Figure 2.14.4
The electric field at P produced by this element is

) 4 1 Adx
e 1

= e (~sin®’i+cosd’j),
0
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where the unit vector # has been written in Cartesian coordinates: = —sin6’i+ cos®’j.

In the absence of symmetry, the field at P has both the x - and y -components. The x -
component of the electric field is

1 Adx" ., 1 Adx x 1 Ax"dx’

sinf’ =— =—

dE, = - ” 2 ” 2 ” 2
dre, x"+y 4ne, X7+ Y7 (X7 + 37 dre, (x°+y°)

X

3/2 "

Integrating from x”=x, to x’=x,, we have

A J‘xz x"dx’ A S+ du RN
—u
Y drme,

(x4 %) 47178 2 Jeer 7 4re, Xty

A 1 1 A y Yy

= 4re, \/x22+y2 _\/xf+y2 dmey \/x22+y2 \/xf+y2

(cos6, —cos6)).

47r£

Similarly, the y -component of the electric field due to the charge element is

1 Adx
” +y

1 Ady y 1 Aydx’

0s6’ = =
dme, X7+t ¥+ Amg, (X7 +y7)

dE =

y

2 3/2 ¢

4re, x

Integrating over the entire length of the rod, we obtain

Ay Lz J.:z cos@’ do’ =

= sin@, —sindb,).
y 47r8 '[ (x’2+y )2 dre, y= 7o 47r£0y( 2 X

where we have used the result obtained in Eq. (2.10.8) in completing the integration.

1

In the infinite length limit where x, — — and x, —+eo, with x;=ytan6,, the
corresponding angles are 6, =—x/2 and 6, =+7 /2. Substituting the values into the

expressions above, we have

12/1

E =0, E =
dre, y

x y

in agreement with the result shown in Eq. (2.10.11).
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2.15 Conceptual Questions

1.

Compare and contrast Newton’s law of gravitation, FG =—(Gmm, / r*)F, and

Coulomb’s law, F, = (k,g,q, / r*)F.

Can electric field lines cross each other? Explain.

Two opposite charged objects are placed on a line as shown in the figure below.

—q 3q

The charge on the right is three times the magnitude of the charge on the left.
Besides infinity, where else can electric field possibly be zero?

A test charge is placed at the point P near a positively charged insulating rod.

+ - B - - -

How would the magnitude and direction of the electric field change if the
magnitude of the test charge were decreased and its sign changed with everything
else remaining the same?

An electric dipole, consisting of two equal and opposite point charges at the ends of
an insulating rod, is free to rotate about a pivot point in the center. The rod is then
placed in a non-uniform electric field. Does it experience a force and/or a torque?

2.16 Additional Problems

2.16.1 Three Point-Like Charged Objects on Vertices of Equilateral Triangle

Three point-like charged objects are placed at the corners of an equilateral triangle, as
shown in Figure 2.16.1. Calculate the electric force experienced by (a) the +9.00 uC

charge, and (b) the —6.00 uC charge.

2.16.2 Three Point-Like Charged Objects on Vertices of Right Triangle
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A right isosceles triangle of side a has charges +¢g, +2¢, and —g arranged on its

vertices, as shown in Figure 2.16.2. What is the electric field at point P, midway between
the line connecting the +¢ and —¢g charges? Give the magnitude and direction of the

electric field.

9.00 uC
+

0.600 m
a

. X + - X
y a
3.00 uC ~6.00 uC 2q —q

Figure 2.16.1 Three point-like charged objects Figure 2.16.2

2.16.3 Four Point-Like Charged Objects

Four point-like charged objects are placed at the corners of a square of side a, as shown
in Figure 2.16.3.

3q a u

da a

4q = 2q

Figure 2.16.3 Four point-like charged objects

(a) What is the electric field at the location of charge ¢ ?

(b) What is the electric force on 2¢q ?

2-50



2.16.4 Semicircular Wire

A positively charged wire is bent into a semicircle of radius R, as shown in Figure
2.16.4. The charge on the semicircle is Q. However, the charge per unit length along the

semicircle is non-uniform and given by A(0) = A cos6.

(a) What is the relationship between A, R and Q?

(b) If a point-like charged object with charge ¢ is placed at the origin, what is the force
on that object?

6,/ R

Figure 2.16.4
2.16.5 Electric Dipole

An electric dipole lying in the xy-plane with a uniform electric field applied in the

positive x -direction is displaced by a small angle 6 from its equilibrium position, as
shown in Figure 2.16.5.

o=

Figure 2.16.5

The charges are separated by a distance 2a. The moment of inertia of the dipole about
the center of mass is /_ . If the dipole is released from this position, show that its

angular orientation exhibits simple harmonic motion. What is the period of oscillation?
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2.16.6 Charged Cylindrical Shell and Cylinder

(a) A uniformly charged circular cylindrical shell of radius R and height / has a total
charge Q. What is the electric field at a point P a distance z from the bottom side of the

cylinder as shown in Figure 2.16.6? (Hint: Treat the cylinder as a set of charged rings.)

[)

X
Figure 2.16.6 A uniformly charged cylinder

(b) If the configuration is instead a solid cylinder of radius R, height 4 and has a
uniform volume charge density. What is the electric field at P? (Hint: Treat the solid
cylinder as a set of charged disks.)

2.16.7 Two Conducting Balls

Two tiny conducting balls of identical mass m and identical charge ¢ hang from non-

conducting threads of length /. Each ball forms an angle 8 with the vertical axis, as
shown in Figure 2.16.9. Assume that 6 is so small that tan6 = sinf.

1/3

(a) Show that, at equilibrium, the separation between the balls is » = (¢°// 2me,mg) " .

(b)If I=1.2x10°cm, m=1.0x10" g, and x=5.0cm, what is ¢ ?
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Figure 2.16.9
2.16.8 Torque on an Electric Dipole

An electric dipole consists of two charges ¢ ,=+2¢ and ¢,=-2e (where

e=1.6x10""C), separated by a distance d =10~ m. The electric charges are placed
along the y -axis as shown in Figure 2.16.10. Suppose a constant external electric field

Em =3 i+ 3j)N/C is applied.
(a) What is the magnitude and direction of the dipole moment?
(b) What is the magnitude and direction of the torque on the dipole?

(c) Do the electric fields of the charges g, and g, contribute to the torque on the dipole?
Briefly explain your answer.

+

‘ d
|
2, L0 -

Figure 2.16.10
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