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 Fields 

 
 
 
1.1  Fields as the Agent of All Interactions 

1.1.1 Action at a Distance Versus Field Theory 
 
Classical electromagnetic field theory emerged in more or less complete form in 1873 in 
James Clerk Maxwell’s A Treatise on Electricity and Magnetism.  Maxwell based his 
theory in large part on the intuitive insights of Michael Faraday we discuss in the next 
section.  The wide acceptance of Maxwell’s theory has caused a fundamental shift in our 
understanding of physical reality.  In this theory, electromagnetic fields are the agents of 
the interaction between material objects.  This view differs radically from the older 
“action at a distance” view that preceded field theory.    
 
What is “action at a distance?”  It is a worldview in which the interaction of two material 
objects requires no mechanism other than the objects themselves and the empty space 
between them.  That is, two objects exert a force on each other simply because they are 
present.  Any mutual force between them (for example, gravitational attraction or electric 
repulsion) is instantaneously transmitted from one object to the other through empty 
space.  There is no need to take into account any method or agent of transmission of that 
force, or any finite speed for the propagation of that agent of transmission.  This is known 
as “action at a distance” because objects exert forces on one another (“action”) with 
nothing but empty space (“distance”) between them.  No other agent or mechanism is 
needed. 
 

                      
 
            (a) link             (b) link 

Figure 1.1.1  Current-carrying wires can repel or attract each other. 

 
To be concrete, consider the following.  Two long parallel wires carrying current in 
opposite directions will repel one another.  This is shown in Figure 1.1.1(a).  If the 
current is in the same direction in both wires, the wires will attract one another, as in 

https://youtu.be/rU7QOukFjTo
https://youtu.be/rU7QOukFjTo
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Figure 1.1.1(b).  The movie linked to Figure 1.1.1 shows this behavior for the two 
directions of current.  In the action at a distance model this behavior requires nothing 
more than the current carrying-current wires and the empty space between them.  And 
indeed the space between the wires does appear to be empty to our normal senses.  At 
first blush, we cannot see, hear, or touch anything that indicates that there is something in 
the space between the wires shown in Figure 1.1.1.   
 
But despite the evidence of their senses, many natural philosophers objected to the action 
at a distance model because in our everyday experience, forces are exerted by one object 
on another only when the objects are in direct contact.  In the field theory view, this is 
always true in some sense.  That is, objects that are not in direct contact (objects 
separated by apparently empty space) must exert a force on one another through the 
presence of an intervening medium or mechanism existing in the space between the 
objects.   
 
The force between the two objects is transmitted by direct “contact” from the first object 
to an intervening mechanism immediately surrounding that object, and then from one 
element of space to a neighboring element, in a continuous manner, until the force is 
transmitted to the region of space contiguous to the second object, and thus ultimately to 
the second object itself.   
 
Although the two objects are not in direct contact with one another, they are in direct 
contact with a medium or mechanism that exists between them.  The force between the 
objects is transmitted (at a finite speed) by stresses induced in the intervening space by 
the presence of the objects.  The “field theory” view thus avoids the concept of “action at 
a distance” and replaces it by the concept of “action by continuous contact.” The 
“contact” is provided by a stress, or “field,” induced in the space between the objects by 
their presence.   
 
And indeed, if we use more sophisticated instruments than our normal senses, we find 
that we can measure the presence of something in the space between the wires in Figure 
1.1.1.  That something is a continuous magnetic field created by the current in the wires 
that transmits forces from one wire to the other.  A movie of these magnetic fields is 
shown in Section 9.2.1.  Even though we are not aware of these fields with our normal 
senses, it is this invisible magnetic field that is causing the wires to move.   

 
This is the essence of field theory, and it is the foundation of all modern approaches to 
understanding the world around us.  Classical electromagnetism was the first field theory.  
It involves many concepts that are mathematically complex.  As a result, even now it is 
difficult to appreciate.   In this textbook, we will give you all the mathematics you need 
to understand how electromagnetic fields are created, store energy, and transmit forces.  
We will also provide movies and interactive simulations to try to make these difficult 
mathematical concepts more intuitive, following Faraday’s insights as outlined below.   
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1.1.2 Rubber Bands and Strings and the Forces Transmitted by Fields 
 
Faraday was the first to understand the connection between the shape of electromagnetic 
fields and the forces they produce.  The forces transmitted by electromagnetic fields can 
be understood conceptually as analogous to the forces transmitted by rubber bands and 
strings.  This was Faraday’s great insight, and it led him directly to the hypothesis of 
fields as the mediator of interactions between material objects.   
 
To understand Faraday’s insight, we must show depictions of the total field, that is the 
field due to all objects being considered.  For example, to understand, as Faraday did, the 
reason that a point charge in a constant electric field feels a force, we must depict the 
total field due to both the constant electric field and the field of the point charge.   This 
depiction of the total field is rare in introductory texts, but it allows profound insight into 
the mechanisms whereby fields transmit forces. The stresses transmitted by 
electromagnetic fields can be understood as analogous to the forces transmitted by rubber 
bands and strings, but to reach this understanding we must show a representation of the 
total field.  A representation of the total magnetic field that exists between the wires in 
Figure 1.1.1 is shown in Figure 9.2.2, and one can understand their attraction or 
repulsion, exactly as Faraday did, by looking at the shape of the magnetic field lines in 
this Figure and in the accompanying movie.   
 
Throughout this text we show figures and give link to movies that show the total field 
configuration in various circumstances.  We do this because this allows you to better 
make the intuitive connection between the stresses transmitted by electromagnetic fields 
and the forces transmitted by rubber bands and strings.  Thereby, you can relate 
unfamiliar concepts about forces in electromagnetism to your more familiar experience 
with the way the world works in terms of common everyday things that you can see, hear, 
and touch, and already understand at an intuitive level, such as strings and rubber bands.   
 
1.2 Scalar Fields 
 

“… In order therefore to appreciate the requirements of the science [of 
electromagnetism], the student must make himself familiar with a 
considerable body of most intricate mathematics, the mere retention of 
which in the memory materially interferes with further progress …” 
 

James Clerk Maxwell [1855] 
 
 

In this first chapter of your introduction to field theory, we discuss what a field is, and 
how we represent fields. We begin with scalar fields.  A scalar field is a function that 
gives us a single value of some variable for every point in space. As an example, the 
image in Figure 1.2.1 shows the nighttime temperatures measured by the Thermal 
Emission Spectrometer instrument on the Mars Global Surveyor (MGS). The data were 
acquired during the first 500 orbits of the MGS mapping mission. The coldest 
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temperatures, shown in purple, are 120− °C while the warmest, shown in white, are 
65− °C. 

 
The view is centered on Isidis Planitia (15N, 270W), which is covered with warm 
material, indicating a sandy and rocky surface. The small, cold (blue) circular region to 
the right is the area of the Elysium volcanoes, which are covered in dust that cools off 
rapidly at night. At this season, the north polar region is in full sunlight and is relatively 
warm at night. It is winter in the southern hemisphere and the temperatures are extremely 
low. 
 
 
 
 
 

Figure 1.2.1 Nighttime temperature map for Mars 
 
 
 
 
 

 
The various colors on the map represent the surface temperature. This map, however, is 
limited to representing only the temperature on a two-dimensional surface and thus, it 
does not show how temperature varies as a function of altitude.   In principal, a scalar 
field provides values not only on a two-dimensional surface in space but for every point 
in space.   
 
Figure 1.2.2 illustrates the variation of temperature as a function of height above the 
surface of the Earth, which is a third dimension which complements the two dimensions 
shown in Figure 1.2.1.   
 
 
 

 
 

Figure 1.2.2 Atmospheric temperature variation as a function 
of altitude above the Earth’s surface 
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How do we represent three-dimensional scalar fields?  In principle, one could create a 
three-dimensional atmospheric volume element and color it to represent the temperature 
variation.  
 
 
 

 
 

Figure 1.2.3 Spherical coordinates 
 
 
 
 

 
Another way is to simply represent the temperature variation by a mathematical function. 
For the Earth we shall use spherical coordinates   (r,θ ,φ)  shown in Figure 1.2.3 with the 
origin chosen to coincide with the center of the Earth. The temperature at any point is 
characterized by a function   T (r,θ ,φ) . In other words, the value of this function at the 
point with coordinates   (r,θ ,φ)  is a temperature with given units. The temperature 
function   T (r,θ ,φ)  is an example of a “scalar field.” The term “scalar” implies that 
temperature at any point is a number rather than a vector (a vector has both magnitude 
and direction). 

Example 1.1: Half-Frozen /Half-Baked Planet 
 
As an example of a scalar field, consider a planet surrounded by an atmosphere. The 
planet rotates with the same angular speed about its axis as the planet orbits about a 
nearby star, i.e., one hemisphere always faces the star. Let  R  denote the radius of the 
planet. Use spherical coordinates   (r,θ ,φ)  with the origin at the center of the planet, and 
choose  φ = π / 2  for the center of the hemisphere facing the star.  A model for the 
temperature variation at any point is given by 
 
 

  
T (r,θ ,φ) = T0 + T1 sin2θ + T2 (1+ sinφ)⎡⎣ ⎤⎦e−α (r−R)  (1.2.1) 

 
where   T0 ,   T1 ,   T2 , and α  are constants. The dependence on the variable  r  in the term 

  e−α (r−R)  indicates that the temperature decreases exponentially as we move radially away 
from the surface of the planet. The dependence on the variable θ  in the term  sin

2θ  
implies that the temperature decreases as we move toward the poles. Finally, the φ  
dependence in the term  (1+ sinφ)  indicates that the temperature decreases as we move 
away from the center of the hemisphere facing the star. 
 
A scalar field can also be used to describe other physical quantities such as the 
atmospheric pressure. However, a single number (magnitude) at every point in space is 
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not sufficient to characterize quantities such as the wind velocity since a direction at 
every point in space is needed as well. 
 

1.2.1  Representations of a Scalar Field 
 

A field, as stated earlier, is a function that has a different value at every point in space.  A 
scalar field is a field for which there is a single number associated with every point in 
space. We have seen that the temperature of the Earth’s atmosphere at the surface is an 
example of a scalar field.  Another example is 
 

 
( ) ( )2 22 2 2 2

1 1/ 3( , , )x y z
x y d z x y d z

φ = −
+ + + + − +

 (1.2.2)                    

 
This expression defines the value of the scalar function φ  at every point   (x, y, z)  in 
space. How do visually represent a scalar field defined by an equation such as Eq. 
(1.2.2)?  Below we discuss three possible representations. 
 
1. Contour Maps 

 
One way is to fix one of our independent variables ( z , for example) and then show a 
contour map for the two remaining dimensions, in which the curves represent lines of 
constant values of the function φ .  A series of these maps for various (fixed) values of  z  
then will give a feel for the properties of the scalar function.  We show such a contour 
map in the  xy -plane at   z = 0  for Eq. (1.2.2), namely,   
 

 
( ) ( )2 22 2

1 1/ 3( , ,0)x y
x y d x y d

φ = −
+ + + −

 (1.2.3) 

 
Various contour levels are shown in Figure 1.2.4, for   d = 1, labeled by the value of the 
function at that level.   
 
 
 
 
 
Figure 1.2.4 A contour map in the  xy -plane 

of the scalar field given by Eq. (1.2.3).     
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2. Color-Coding 
 
Another way we can represent the values of the scalar field is by color-coding in two 
dimensions for a fixed value of the third. This was the scheme used for illustrating the 
temperature fields in Figures 1.2.1 and 1.2.2. In Figure 1.2.5 a similar map is shown for 
the scalar field   φ(x, y,0) .  Different values of ( , ,0)x yφ  are characterized by different 
colors in the map.  
 
 

 
 
 
 

Figure 1.2.5 A color-coded map in the  xy -
plane of the scalar field given by Eq. (1.2.3). 
 
 
 
3. Relief Maps 
 
A third way to represent a scalar field is to fix one of the dimensions, and then plot the 
value of the function as a height versus the remaining spatial coordinates, say  x  and  y , 
that is, as a relief map.  Figure 1.2.6 shows such a map for the same function ( , ,0)x yφ . 
 
 
 

 
 

Figure 1.2.6 A relief map of the scalar field given by 
Eq. (1.2.3). 

 
 
 
 
 
1.3 Vector Fields 
 
A vector is a quantity that has both a magnitude and a direction in space. Vectors are used 
to describe physical quantities such as velocity, momentum, acceleration and force, 
associated with an object. However, when we try to describe a system that consists of a 
large number of objects (e.g., moving water, snow, rain, …) we need to assign a vector to 
each individual object.  
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As an example, let’s consider falling snowflakes, as shown in Figure 1.3.1. As snow falls, 
each snowflake moves in a specific direction. The motion of the snowflakes can be 
analyzed by taking a series of photographs. At any instant in time, we can assign, to each 
snowflake, a velocity vector that characterizes its movement.  
 
 
 
 

 
Figure 1.3.1 Falling snow. 

 
 
 
 
The falling snow is an example of a collection of discrete bodies. On the other hand, if 
we try to analyze the motion of continuous bodies such as fluids, a velocity vector then 
needs to be assigned to every point in the fluid at any instant in time. Each vector 
describes the direction and magnitude of the velocity at a particular point and time. The 
collection of all the velocity vectors is called the velocity vector field.  An important 
distinction between a vector field and a scalar field is that the former contains 
information about both the direction and the magnitude at every point in space, while 
only a single variable is specified for the latter. An example of a system of continuous 
bodies is airflow. Figure 1.3.2 depicts a scenario of the variation of the jet stream, which 
is the wind velocity as a function of position. Note that the value of the height is “fixed” 
at 34,000 ft.  
 
 
 

 
Figure 1.3.2 Jet stream with arrows indicating 
flow velocity. The “streamlines” are formed 
by joining arrows from head to tail. 
 
 
 
 
 
1.4 Fluid Flow 
 

1.4.1 Sources and Sinks  
 
In general, a vector field     


F(x, y, z)can be written as 

 
 ˆ ˆ ˆ( , , ) ( , , ) ( , , ) ( , , )x y zx y z F x y z F x y z F x y z= + +F i j k


 (1.4.1) 
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where the components are scalar fields. Below we use fluids to examine the properties 
associated with a vector field since fluid flows are the easiest vector fields to visualize.  
 
In Figure 1.4.1 we show physical examples of a fluid flow field, where we represent the 
fluid by a finite number of particles to show the structure of the flow. In Figure 1.4.1(a), 
particles (fluid elements) appear at the center of a cone (a “source”) and then flow 
downward under the effect of gravity.  That is, we create particles at the origin, and they 
subsequently flow away from their creation point.  We also call this a diverging flow, 
since the particles appear to “diverge” from the creation point.  Figure 1.4.1(b) is the 
converse of this, a converging flow, or a “sink” of particles.   
 

  
     (a)   link          (b)  link 
Figure 1.4.1 (a) An example of a source of particles and the flow associated with a 
source, and (b) an example of a sink of particles and the flow associated with a sink. 
 
A different representation of the diverging fluid flow in Figure 1.4.1(a) is depicted in 
Figure 1.4.2. Here the direction of the flow is represented by a texture pattern in which 
the direction of the field (radial) has correlations in lightness and darkness.  The lightness 
or darkness has no physical meaning.  We are simply using correlations in the lightness 
and darkness to indicate the direction of the vector field.   
 

 
 link 

Figure 1.4.2 Representing the flow field associated with a source using a texture pattern. 

 
We can use this same technique to visualize fluid flows with multiple sources or sinks.  
For example, Figure 1.4.3(a) shows a source below a sink of lesser magnitude.  We see 

https://youtu.be/EDFunNl4EXQ
https://youtu.be/UqiZOvxZEbo
https://youtu.be/bqBaD80NnAw
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flow out of the source, some of which flows into the sink, but much of which flows to 
infinity.  In contrast, Figure 1.4.3(b) shows two sources of unequal strength.  We see flow 
out of both of the sources, all of which flows to infinity, with a comet-like tail streaming 
out from the source of lesser strength.   
 

  
 (a)   link      (b)   link 

 
Figure 1.4.3 The flow fields associated with (a) a source (lower) and a sink (upper) 
where the sink is smaller than the source, and (b) two sources of unequal strength. 
 
Finally, in Figure 1.4.4, we illustrate a constant downward flow interacting with a 
diverging flow (source).  The diverging flow is able to make some headway “upwards” 
against the downward constant flow, but eventually turns and flows downward, 
overwhelmed by the strength of the “downward” flow.    
 

   link 
 

Figure 1.4.4 A constant downward flow interacting with a diverging flow (source). 

 
In the language of vector calculus, we represent the flow field of a fluid by 
 
 

    
v(x, y, z) = vx (x, y, z)î + vy (x, y, z) ĵ+ vz (x, y, z)k̂  (1.4.2) 

 
where   vx (x, y, z) ,   

vy (x, y, z) , and   vz (x, y, z)  are the component functions. For an 
incompressible flow, the point   (x, y, z)  is a source of fluid if the divergence of ( , , )x y zv  
is greater than zero. That is, if 
 

https://youtu.be/jDz-a5Si2Io
https://youtu.be/goSsoNLmrvA
https://youtu.be/CN74NIFlEf0
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∇ ⋅ v(x, y, z) =

∂vx

∂x
+
∂vy

∂y
+
∂vz

∂z
> 0  (1.4.3) 

where 

 
   
∇ = ∂

∂x
î + ∂

∂y
ĵ+ ∂

∂z
k̂  (1.4.4) 

 
is the del operator. On the other hand, the point ( , , )x y z  is a sink if the divergence of 
( , , )x y zv  is less than zero. When ( , , ) 0x y z∇⋅ =v , then the point ( , , )x y z is neither a 

source nor a sink.  
 
 

1.4.2 Circulations  
 
A flow field that is neither a source nor a sink may exhibit another class of behavior, 
which we call circulation. In Figure 1.4.5(a) we show a physical example of a circulating 
flow field where particles are not created or destroyed (except at the beginning of the 
animation in (a)), but merely move in circles. The purely circulating flow can also be 
represented by textures, as shown in Figure 1.4.5(b).  
 

  
      (a)   link              (b)   link 
 
Figure 1.4.5 (a) An example of a circulating fluid. (b) Representing a circulating flow 
using textures. 

 
A flow field can have more than one system of circulation centered about different points 
in space.  In Figure 1.4.6(a) we show a flow field with two circulations. The flows are in 
opposite senses, and one of the circulations is stronger than the other.  In Figure 1.4.6(b) 
we have the same situation, except that now the two circulations are in the same sense.   

 

https://youtu.be/UqiZOvxZEbo
https://youtu.be/_hWg1fQ0S1I
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 (a)   link           (b)   link 

 
Figure 1.4.6 A flow with two circulation centers with (a) opposite directions of 
circulation, and (b) the same direction of circulation. 

 
In Figure 1.4.7, we show a constant downward flow interacting with a counter-clockwise 
circulating flow.  The circulating flow is able to make some headway against the 
downward constant flow, but eventually is overwhelmed by the strength of the 
“downward” flow.   
 

   link 
 

Figure 1.4.7 A constant downward flow interacting with a counter-clockwise circulating 
flow. 
In the language of vector calculus, the flows shown in Figures 1.4.5 through 1.4.7 are 
said to have a non-zero curl, but zero divergence.  In contrast, the flows shown in Figures 
1.4.2 through 1.4.4 have a zero curl (they do not move in circles) and a non-zero 
divergence (particles are created or destroyed).   
 
Finally, in Figure 1.4.8, we show a fluid flow field that has both a circulation and a 
divergence (both the divergence and the curl of the vector field are non-zero).  Any 
vector field can be written as the sum of a curl-free part (no circulation) and a 
divergence-free part (no source or sink).  We will find in our study of electrostatics and 
magnetostatics that the electrostatic fields are curl free (e.g. they look like Figures 1.4.2 
through 1.4.4) and the magnetic fields are divergence free (e.g. they look like Figures 
1.4.5 through 1.4.7). Only when dealing with time-varying situations will we encounter 
electric fields that have both a divergence and a curl.  Figure 1.4.8 depicts a field whose 
curl and divergence are both non-vanishing. As far as we know, even in time-varying 
situations, magnetic fields always remain divergence-free. Therefore, magnetic fields will 
always look like the patterns shown in Figures 1.4.5 through 1.4.7. 
 

https://youtu.be/MWL4WebRfzs
https://youtu.be/3o18No6vPsI
https://youtu.be/9TuFa8zp7cM
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   link 
 

Figure 1.4.8 A flow field that has both a source (divergence) and a circulation (curl). 

 

1.4.3 Relationship between Fluid Fields and Electromagnetic Fields 
 
Vector fields that represent fluid flow have an immediate physical interpretation: the 
vector at every point in space represents a direction of motion of a fluid element, and we 
can construct animations of those fields, as above, which show that motion.  A more 
general vector field, for example the electric and magnetic fields discussed below, do not 
have that immediate physical interpretation of a flow field.  There is no “flow” of a fluid 
along an electric field or magnetic field.    

 
However, even though the vectors in electromagnetism do not represent fluid flow, we 
carry over many of the terms we use to describe fluid flow to describe electromagnetic 
fields as well.  For example we will speak of the flux (flow) of the electric field through a 
surface.  If we were talking about fluid flow, “flux” would have a well-defined physical 
meaning, in that the flux would be the amount of fluid flowing across a given surface per 
unit time.  There is no such meaning when we talk about the flux of the electric field 
through a surface, but we still use the same term for it, as if we were talking about fluid 
flow.  Similarly we will find that magnetic vector field exhibit patterns like those shown 
above for circulating flows, and we will sometimes talk about the circulation of magnetic 
fields.  But there is no fluid circulating along the magnetic field direction.   

 
We use much of the terminology of fluid flow to describe electromagnetic fields because 
it helps us understand the structure of electromagnetic fields intuitively.  However, we 
must always be aware that the analogy is limited. 

 
 
1.5 Gravitational Field 
 
The gravitational field of the Earth is another example of a vector field that can be used 
to describe the interaction between a massive object and the Earth. According to 
Newton’s universal law of gravitation, the gravitational force on an object of mass  m  due 
to the interaction with another object of mass  M  is given by 
 

https://youtu.be/eajGTYuAhnE
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
Fg = −G Mm

r 2 r̂  (1.5.1) 

 
where  r  is the distance between the two objects and   ̂r  is the unit vector located at the 
position of  m  that points from  M  towards  m . The constant of proportionality is the 
gravitational constant   G = 6.67 ×10−11 N ⋅m2 /kg2 . Notice that the force is always 
attractive, with its magnitude being proportional to the inverse square of the distance 
between the masses.  
 
As an example, if  M  is the mass of the Earth, the gravitational field   

g  at a point  P  in 
space, defined as the gravitational force per unit mass, can be written as 
 

 20
ˆlim g

m

MG
m r→

= = −
F

g r


  (1.5.2) 

 
From the above expression, we see that the field is radial and points toward the center of 
the Earth, as shown in Figure 1.5.1. 
 

   
 

Figure 1.5.1 Gravitational field of the Earth. 
 
Near the Earth’s surface, the gravitational field g  is approximately constant:     

g = −gr̂ , 
where 

 2
2 9.8 m/s
E

Mg G
R

= ≈  (1.5.3) 

 
and  RE  is the radius of Earth. The gravitational field near the Earth’s surface is depicted 
in Figure 1.5.2. 
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Figure 1.5.2 Uniform gravitational field near the surface of the Earth. 
 
Notice that an object in a constant gravitational field does not necessarily move in the 
direction of the field. This is true only when its initial velocity is in the same direction as 
the field. On the other hand, if the initial velocity has a component perpendicular to the 
gravitational field, the trajectory will be parabolic. 
 
 
 
 
1.6 Electric Fields 
 
The force between electrically charged objects at rest is called the electrostatic force. 
However, unlike mass in gravitational force, there are two types of electric charge: 
positive and negative. The electrostatic force between charged objects falls off as the 
inverse square of their distance of separation, and can be either attractive or repulsive. 
Charged objects exert forces on each other in a manner that is analogous to gravitation. 
Consider an object that has charge  Q . A “test charge” with charge  q  that is placed at a 
point  P  a distance  r  from  Q  will experience a Coulomb force:  
 

 2
ˆe e

Qqk
r

=F r


 (1.6.1) 

 
where   ̂r  is the unit vector that points from  Q  to  q . The constant of proportionality 

  ke = 9.0 ×109 N ⋅m2 /C2  is called the Coulomb constant. The electric field at  P  is 
defined as  

 20
ˆlim e

eq

Qk
q r→

= =FE r



 (1.6.2) 

 
The SI unit of electric field isnewtons/coulomb (N/C) .  If  Q  is positive, its electric field 
points radially away from the charge; on the other hand, the field points radially inward if 
 Q  is negative (Figure 1.6.1). In terms of the field concept, we may say that the charge  Q  
creates an electric field   


E  that exerts a force e q=F E

 
 on  q .   
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  (a)          (b)  

 
Figure 1.6.1 Electric field for (a) positive and (b) negative charges. 

 
The charges in Figure 1.6.1 are stationary.  We can also talk about the electric fields of 
moving charges.  For example, Figure 1.6.2 shows one frame of movies of the electric 
field of a moving positive and negative point charge, assuming the speed of the charge is 
small compared to the speed of light.   
 

  
            (a)   link                (b)  link 

 
Figure 1.6.2 The electric fields of (a) a moving positive charge,  (b) a moving negative 

charge  when the speed of the charge is small compared to the speed of light. 
 
1.7 Magnetic Fields 
 
The magnetic field is another example of a vector field. The most familiar source of 
magnetic fields is a bar magnet. One end of the bar magnet is called the north pole and 
the other, the south pole. Like poles repel while opposite poles attract (Figure 1.7.1). 
 

 
 

Figure 1.7.1 Magnets attracting and repelling. 
 
If we place some compasses near a bar magnet, the needles will align themselves along 
the direction of the magnetic field, as shown in Figure 1.7.2. 
 

https://youtu.be/RDK5AczWVSE
https://youtu.be/dEOyvbS7t3s
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Figure 1.7.2 Magnetic field of a bar magnet. 

 
 
 
 

 
The observation can be explained as follows: a magnetic compass consists of a tiny bar 
magnet that can rotate freely about a pivot point passing through the center of the magnet. 
When a compass is placed near a bar magnet which produces an external magnetic field, 
it experiences a torque which tends to align the north pole of the compass with the 
external magnetic field. 
 
The Earth’s magnetic field behaves as if there were a bar magnet in it (Figure 1.7.3). 
Note that the south pole of the magnet is located in the northern hemisphere.  
 
 
 
 

 
 

Figure 1.7.3 Magnetic field of the Earth  
 
 
 
 
 
 
As we will see in Chapter 9, moving electric charges produce magnetic fields.  Thus the 
moving charges in Figure 1.6.2 are accompanied not only by electric fields, but by 
magnetic fields as well.  Figure 1.7.4  shows one frame of the animations of the magnetic 
field of a moving positive and negative point charge, assuming the speed of the charge is 
small compared to the speed of light.  If the charge is not moving, there is no magnetic 
field. 
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     (a)   link              (b)  link 
 
Figure 1.7.4 The magnetic field of (a) a moving positive charge and of (b) a moving 
negative charge when the speed of the charge is small compared to c. 

 
Another familiar source of magnetic fields is the current-carrying wire. In Figure 1.7.5, 
we show the magnetic field associated with an infinitely long current-carrying wire.  The 
magnetic field is wrapped in circles about the wire, with the direction of the rotation of 
the circles determined by the right hand rule (if the thumb of your right hand is in the 
direction of the current, your fingers will curl in the direction of the magnetic field).   
 

 
 

Figure 1.7.5 Magnetic field lines due to an infinite wire carrying current  I . 
 
 
1.8 Representations of a Vector Field 
 
How do we represent vector fields? Since there is much more information (magnitude 
and direction) in a vector field, our visualizations are correspondingly more complex 
when compared to the representations of scalar fields. 
 
Let us introduce an analytic form for a vector field and discuss the various ways that we 
represent it. Let 

 

 2 2 2 3/ 2 2 2 2 3/ 2

ˆ ˆ ˆ ˆˆ ˆ( ) 1 ( )( , , )
[ ( ) ] 3 [ ( ) ]
x y d z x y d z

x y z
x y d z x y d z

+ + + + − += −
+ + + + − +
i j k i j kE


 (1.8.1) 

                 
This field is proportional to the electric field of two point charges of opposite signs, with 
the magnitude of the positive charge three times that of the negative charge.  The positive 

https://youtu.be/Q0ahOcpBDR8
https://lms.mitx.mit.edu/courses/MITx/8.02r-MW/2014_Spring/courseware/Visualization/Chapter_1_Visualization/18
https://youtu.be/lJ2hVjfg5CY


 1-20 

charge is located at   (0,−d ,0)  and the negative charge is located at (0, ,0)d .  (We discuss 
how this field is calculated in Section 2.7.) 
 

1.8.1 Vector Field Representation 
 

Figure 1.8.1 is an example of a “vector field” representation of Eq. (1.8.1), in the plane 
where   z = 0 .  We show the charges that would produce this field if it were an electric 
field, one positive (the orange charge) and one negative (the blue charge).  We will 
always use this color scheme to represent positive and negative charges.   
 

    
link 

Figure 1.8.1 A “vector field” representation of the field of two point charges, one 
negative and one positive, with the magnitude of the positive charge three times that of 
the negative charge.   
 
In the vector field representation, we put arrows representing the field direction on a 
rectangular grid.  The direction of the arrow at a given location represents the direction of 
the vector field at that point.  In many cases, we also make the length of the vector 
proportional to the magnitude of the vector field at that point.  But we also may show 
only the direction with the vectors (that is make all vectors the same length), and color-
code the arrows according to the magnitude of the vector.  Or we may not give any 
information about the magnitude of the field at all, but just use the arrows on the grid to 
indicate the direction of the field at that point.   
 

https://mit-teal.github.io/802/gwt-teal/PCharges2.html
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Figure 1.8.1 is an example of the latter situation.  That is, we use the arrows on the vector 
field grid to simply indicate the direction of the field, with no indication of the magnitude 
of the field, either by the length of the arrows or their color.  Note that the arrows point 
away from the positive charge (the positive charge is a “source” for electric field) and 
towards the negative charge (the negative charge is a “sink” for electric field).    

 

1.8.2 Field Line Representation 
 
There are other ways to represent a vector field.  One of the most common is to draw 
“field lines.”  Faraday called the field lines for electric field “lines of force.”  To draw a 
field line, start out at any point in space and move a very short distance in the direction of 
the local vector field, drawing a line as you do so.  After that short distance, stop, find the 
new direction of the local vector field at the point where you stopped, and begin moving 
again in that new direction.  Continue this process indefinitely.  Thereby you construct a 
line in space that is everywhere tangent to the local vector field.  If you do this for 
different starting points, you can draw a set of field lines that give a good representation 
of the properties of the vector field.   Figure 1.8.2 below is an example of a field line 
representation for the same two charges we used in Figure 1.8.1.   

 

   
 link 

 
Figure 1.8.2 A “vector field” representation of the field of two point charges, and a “field 
line” representation of the same field.  The field lines are everywhere tangent to the local 
field direction. 

 
For the example of the velocity field of the jet stream discussed in 1.3, the field line 
representation is shown in Figure 1.8.3.  

https://mit-teal.github.io/802/gwt-teal/PCharges2.html
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Figure 1.8.3 Field lines of jet stream 

 
In summary, the field lines are a representation of the collection of vectors that constitute 
the field, and they are drawn according to the following rules: 
 
(1) The direction of the field line at any point in space is tangent to the field at that point. 
 
(2) The field lines never cross each other, otherwise there would be two different field 
directions at the point of intersection. 
 

1.8.3 Grass Seeds and Iron Filings Representations 
 
The final representation of vector fields is the “grass seeds” representation or the “iron 
filings” representation.  For an electric field, this name derives from the fact that if you 
scatter grass seeds in a strong electric field, they will orient themselves with the long axis 
of the seed parallel to the local field direction.  They thus provide a dense sampling of the 
shape of the field.  Figure 1.8.4 is a “grass seeds” representation of the electric field for 
the same two charges in Figures 1.8.1 and 1.8.2.   
 

    
link 

 
Figure 1.8.4:  A “grass seeds” representation of the electric field that we considered in 
Figures 1.8.1 and 1.8.2.   

https://mit-teal.github.io/802/gwt-teal/PCharges2.html
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The local field direction is in the direction in which the texture pattern in this figure is 
correlated.  This “grass seeds” representation gives by far the most information about the 
spatial structure of the field.   
 
We will also use this technique to represent magnetic fields, but when used to represent 
magnetic fields we call it the “iron filings” representation.  This name derives from the 
fact that if you scatter iron filings in a strong magnetic field, they will orient themselves 
with their long axis parallel to the local field direction.  They thus provide a dense 
sampling of the shape of the magnetic field.   
 
A frequent question from the student new to electromagnetism is “What is between the 
field lines?”  Figures 1.8.2 and 1.8.4 make the answer to that question clear.  There are 
more field lines that we have chosen not to draw between the field lines we chose to 
draw. The field itself is a continuous feature of the space between the charges, and the 
“grass seeds” representation of field makes that apparent.   

1.8.4 Motion of Electric and Magnetic Field Lines 
 
In this text we will show the spatial structure of electromagnetic fields using all of the 
methods discussed above. In addition, for the field line, grass seeds, and iron filings 
representation, we will frequently show movies of the time evolution of the fields. We do 
this by having the field lines and the grass seed patterns or iron filings patterns move in 
the direction of the energy flow in the electromagnetic field at a given point in space.  We 
will discuss the concept of energy flow in electromagnetic fields in Chapter 13.  This 
energy flow is in the direction of   


E ×

B , the cross product of the electric field E


 and the 

magnetic field B


, and is perpendicular to both E


 and B


.  As an example, one frame of a 
movie of the electric fields of a charge moving upward in a downward constant field is 
shown in Figure 1.8.5, and there is a link to the movie  The flow direction in this movie, 
which is always perpendicular to E, is very different from that in our movies of the fluid 
flow fields above.  In the movies in Section 1.4 above, the direction of the flow is in the 
same direction as the velocity field itself, where as in the movie linked to Figure 1.8.5, 
the flow is perpendicular to the E field. 
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        link 
Figure 1.8.5:  One frame of a movie showing the electric field lines of a positive charge 
moving upward in a downward constant field.  The motion of the field lines and texture 
patterns in this movie are in the direction of   


E ×

B .   

 
We adopt this animation technique for time-changing electromagnetic fields because 
these fields can both support the flow of energy and can store energy as well.  We will 
discuss quantitatively how to compute this energy flow later, when we discuss the 
Poynting vector in Chapter 13.  For now we simply note that when we animate the 
motion of the field line or grass seeds or iron filings representations, the direction of the 
pattern motion indicates the direction in which energy in the electromagnetic field is 
flowing.     
 
In keeping with our discussion in Section 1.1.2, we also note that plotting the total field 
in Figure 1.8.5, that is the electric field of both the constant downward electric field and 
the field of the positive point charge, gives insight into why there is a downward force on 
the point charge.  In the movie linked to Figure 1.8.5, one sees that as the charge moves 
upward, it is forcing itself into the pre-existing electric field, or medium, with stresses in 
that medium that develop due to this encroachment.  These stresses resist the movement 
of the charge into this region.   Moreover, as the charge moves upward and slows, there is 
a continual transfer of the kinetic energy of the charge to the electric energy stored in the 
electric field, thus conserving total energy.  We see this in the movie because it shows the 
flow of electromagnetic energy away from the charge as it slows, and vice versa when he 
speed up again.  We discuss this example in more detail in Section 2.11.2.   
 
 
1.9 Summary 
 
In this chapter, we have discussed the concept of fields. A scalar field   T (x, y, z)  is a 
function on all the coordinates of space. Examples of a scalar field include temperature 
and pressure. On the other hand, a vector field     


F(x, y, z)  is a vector each of whose 

components is a scalar field. A vector field     

F(x, y, z)  has both magnitude and direction at 

every point   (x, y, z)  in space.  Gravitational, electric and magnetic fields are all examples 
of vector fields.  

https://youtu.be/i7XSdpAcUqo
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We have also emphasized that the forces transmitted by electromagnetic fields can be 
understood conceptually as analogous to the forces transmitted by rubber bands and 
strings.   To see this analogy, however, we must show depictions of the total field, that is 
the field due to all objects being considered.  This depiction of the total field is rare in 
introductory texts, but we do it frequently here.  As we proceed, we will always try to 
point out how the forces transmitted by electromagnetic fields can be understood by 
analogy to the more familiar forces transmitted by rubber bands and strings.   
 
 
1.10 Solved Problems 

 

1.10.1 Vector Fields 
 
Make a plot of the following vector fields: 

 
(a)    
v = 3î − 5ĵ  

 
This is an example of a constant vector field in two dimensions. The plot is depicted in 
Figure 1.10.1: 

 
 

Figure 1.10.1 
 
(b)    
v = r̂  
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Figure 1.10.2 
 

(c) 
    
v =

r̂
r 2  

 
In two dimensions, using the Cartesian coordinates where     

r = xî + yĵ ,   
v  can be written 

as 

 
    

v =
r̂
r 2 =

r
r3 =

x î + y ĵ
(x2 + y2 )3/ 2

 

 
The plot is shown in Figure 1.10.3(a). Both the gravitational field of the Earth   

g  and the 
electric field E


due to a point charge have the same characteristic behavior as   

v . In three 
dimensions where     

r = xî + yĵ+ zk̂ , the plot looks like that shown in Figure 1.10.3(b). 
 

 
 

(a) 
 

(b) 
 

             Figure 1.10.3  
 

 

(d) 
    
v =

3xy
r5 î + 2y2 − x2

r5 ĵ  
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Figure 1.10.4 
 
The plot is characteristic of the electric field due to a point electric dipole located at the 
origin. 

 

1.10.2 Scalar Fields 
 

Make a plot of the following scalar functions in two dimensions: 
 

(a) 
  
f (r) =

1
r

 

 
In two dimensions, we may write   r = x2 + y2 . 
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Figure 1.10.5  

 
Figure 1.10.5 can be used to represent the electric potential due to a point charge located 
at the origin. Notice that the mesh size has been adjusted so that the singularity at 0r =  is 
not shown. 
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(b) 
2 2 2 2

1 1( , )
( 1) ( 1)

f x y
x y x y

= −
+ − + +
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Figure 1.10.6 

 
This plot represents the potential due to a dipole with the positive charge located at   y = 1 
and the negative charge at   y = −1 . Again, singularities at   (x, y) = (0,±1)  are not shown.  
 
 
1.11 Additional Problems 
 

1.11.1 Plotting Vector Fields 
 
Plot the following vector fields: 
 

(a) ˆ ˆy x−i j        (b) 1 ˆ ˆ( )
2

−i j      (c) 
ˆ ˆ

2
x y+i j       (d) ˆ2yi      (e) 2 2ˆ ˆx y+i j  

(f) 
2 2

ˆ ˆy x

x y

−
+
i j     (g) ˆ ˆxy x−i j         (h) ˆ ˆcos sinx yi + j  

 

1.11.2 Position Vector in Spherical Coordinates 
 
In spherical coordinates (see Figure 1.2.3), show that the position vector can be written as  
 
 ˆ ˆ ˆsin cos sin sin cosr r rθ φ θ φ θ= + +r i j k  
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1.11.3 Electric Field 
 
A charge  +Q  is situated at the point   (−x,0,0)  and a charge  −Q  is situated at the point 

  (x,0,0) . Find the electric field of these two charges at an arbitrary point   (0, y,0)  on the 

 y -axis. 
 

1.11.4 An Object Moving in a Circle 
 
A particle moves in a circular path of radius  r  in the  xy -plane with a constant angular 
speed   ω = dθ / dt . At some instant t , the particle is at  P , as shown in Figure 1.11.1. 

               
 

Figure 1.11.1 
 
(a) Write down the position vector     

r(t) . 
 
(b) Calculate the velocity and acceleration of the particle at  P .  
 
(c) Express the unit vectors r̂  and  θ̂  in polar coordinates in terms of the unit vectors î  
and ĵ  in Cartesian coordinates. 
 

1.11.5 Vector Fields  
 
(a) Find a vector field in two dimensions which points in the negative radial direction and 
has magnitude 1. 
 
(b) Find a vector field in two dimensions that makes an angle of 45°  with the  x -axis and 
has a magnitude   (x + y)2  at any point   (x + y) . 
 
(c) Find a vector field in two dimensions whose direction is tangential and whose 
magnitude at any point   (x, y)  is equal to its distance from the origin. 
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(d) Find a vector field in three dimensions which is in the positive radial direction and 
whose magnitude is 1. 
 

1.11.6 Object Moving in Two Dimensions 
 
An object moving in two dimensions has a position vector  
 
 ˆ ˆ( ) sin cost a t b tω ω= +r i j   
 
where  a ,  b  and ω  are constants.  
 
(a) How far is the object from the origin at time  t ? 
 
(b) Find the velocity and acceleration as function of time for the object. 
 
(c) Show that the path of the object is elliptical. 
 

1.11.7 Law of Cosines 
 
Two sides of the triangle in Figure 1.11.2(a) form an angle θ . The sides have lengths a  
and  b .  
 

 (a)  (b) 
 

Figure 1.11.2 Law of cosines 
 
The length of the side opposite θ  is given by the relation triangle identity 
 

2 2 2 2 cosc a b ab= + − θ . 
 
Suppose we describe the two given sides of the triangles by the vectors A


 and B


, with 

| | a=A


 and | | b=B


, as shown in Figure 1.11.2(b) 
 
(a) What is the geometric meaning of the vector = −C B A

 
? 
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(b) Show that the magnitude of  C


 is equal to the length of the opposite side of the 
triangle shown in Figure 1.11.2(a), that is, | | c=C


. 

1.11.8 Field Lines 
 
A curve   y = y(x)  is called a field line of the vector field     


F(x, y)  if at every point 

  (x0 , y0 ) on the curve,     

F(x0 , y0 )  is tangent to the curve (see Figure 1.11.3). 

 

  
Figure 1.11.3 

 
Show that the field lines   y = y(x)  of a vector field 

    

F(x, y) = Fx (x, y)î + Fy (x, y) ĵ  

represent the solutions of the differential equation 
 

 
  

dy
dx

=
Fy (x, y)
Fx (x, y)

  




