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Interference and Diffraction

14.1 Superposition of Waves

Consider a region in space where two or more waves pass through at the same time.
According to the superposition principle, the net displacement is simply given by the
vector or the algebraic sum of the individual displacements. Interference is the

combination of two or more waves to form a composite wave, based on such principle.
The idea of the superposition principle is illustrated in Figure 14.1.1.

~ constructive interference

—_— - . - —

(@)

(b)
- —_—

_— destructive interference
(©) (d)

Figure 14.1.1 Superposition of waves. (a) Traveling wave pulses approach each other,
(b) constructive interference, (c¢) destructive interference, (d) waves move apart.

Suppose we are given two waves,
v (x,t)=y, sin(kxtwt+¢), v, (x,0) =y, sin(k,xtwi+¢,). (14.1.1)
The resulting sum of the two waves is
v, =y sin(kxtot+)+y, sin(k,xtwi+¢,). (14.1.2)

The interference is constructive if the amplitude of y(x,¢)1s greater than the individual
ones (Figure 14.1.1b), and destructive if smaller (Figure 14.1.1c¢).

As an example, consider the superposition of the following two waves at 1 =0:
v, (x) =sinx, Vv, (x)=2sin(x+7m/4) (14.1.3)
The resultant wave is given by
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w(x) =y, (x) + , (x) = sinx + 2sin(x + 7/ 4) = (1++2)sinx + V2 cosx, (14.1.4)

where we have used the trigonometric identity ,sin(o + ) =sina cos f +cosasin B and
sin(w/4)=cos(w/4)= V2 /2. Further use of the identity

asinx +bcosx =+\a’* + b’ [Lsinx+ Lcosx
Na® +b* Na' + b
=Va’+b [cosq) sinx +sin@ cosx] (14.1.5)
=+a’ + b’ sin(x + @),

with
¢ =tan”" [2). (14.1.6)
a
then leads to
w(x) = (5+242) 2 sin(x + ), (14.1.7)

where ¢ =tan™' (\/5 /(1+\/§)) =30.4°=0.53rad. The superposition of the waves is

depicted in Figure 14.1.2.
Yix)
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Figure 14.1.2 Superposition of two sinusoidal waves.

We see that the wave has a maximum amplitude when sin(x+@)=1, or x=7w/2-¢.

The interference there is constructive. On the other hand, destructive interference occurs
at x=m—¢ =2.61rad, where sin(r)=0.

14-3



14.1.1 Interference Conditions for Light Sources

Suppose we are considering two light waves. In order to form an interference pattern, the
incident light must satisfy two conditions:

(1) The light sources must be coherent. This means that the waves from the sources must
maintain a constant phase relation. For example, if two waves are phase shifted by ¢ =7,

this phase shift must not change with time.

(i1) The light must be monochromatic. This means that the light consists of just one
wavelength A =2x/k.

Light emitted from an incandescent light bulb is incoherent because the light consists of
waves of different wavelengths and they do not maintain a constant phase relationship.
Thus, no interference pattern is observed.

Figure 14.1.3 Incoherent light source
14.2 Young’s Double-Slit Experiment

In 1801 Thomas Young carried out an experiment in which the wave nature of light was
demonstrated. The schematic diagram of the double-slit experiment is shown in Figure
14.2.1.

naximum 111
111
111
111

maximum flanpl

Figure 14.2.1 Young’s double-slit experiment.
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A monochromatic light source is incident on the first screen that contains a slit S;. The

emerging light then arrives at the second screen which has two parallel slits S, and S, .

which serve as the sources of coherent light. The light waves emerging from the two slits
then interfere and form an interference pattern on the viewing screen. The bright bands
(fringes) correspond to interference maxima, and the dark band interference minima.
Figure 14.2.2 illustrates ways in which the waves could combine to interfere
constructively or destructively.

II

Figure 14.2.2 Constructive interference (a) at P, and (b) at P. (c) Destructive

interference at P.

The geometry of the double-slit interference is shown in the Figure 14.2.3.

0

;@ .5

Figure 14.2.3 Double-slit experiment

Consider light that falls on the screen at a point P a distance y from the point O that

lies on the screen a perpendicular distance L from the double-slit system. A distance d
separates the two slits. The light from slit 2 will travel an extra distance 6 =r, —r, to the
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point P than the light from slit 1. This extra distance is called the path difference. From
Figure 14.2.3, we have, using the law of cosines,

2

2
B=rt+ d —drcos| F -6 |=r+ d —drsin@ , (14.2.1)
2 2 2
and
2 2
n=r’+ d —drcos| F+6 |=r+ d +drsin@ . (14.2.2)
2 2 2
Subtracting Eq. (142.1) from Eq. (14.2.2) yields
r =1t =(r,+r)(r,—1)=2drsin@. (14.2.3)

In the limit L >>d, where the distance to the screen is much greater than the distance
between the slits, the sum of 7 and r, may be approximated by 7 +r, = 2r, and the path
difference becomes

0=r,—r=dsinf . (14.2.4)

In this limit, the two rays 7 and 7, are essentially treated as parallel (see Figure 14.2.4).

’.I

Sie

O=r—ry=dsin@
Figure 14.2.4 Path difference between the two rays, assuming L >>d .

Whether the two waves are in phase or out of phase is determined by the value of § .
Constructive interference occurs when 0 is zero or an integer multiple of the wavelength

A,

0 =dsind =mA, m=0,£1,£2,£3,.-- (constructive interference)|, (14.2.5)
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where m is called the order number. The zeroth-order (7 =0 ) maximum corresponds to
the central bright fringe at 6 =0, and the first-order maxima (m==1) are the bright
fringes on either side of the central fringe.

When § is equal to an odd integer multiple of A/2, the waves will be 180° out of phase
at P, resulting in destructive interference with a dark fringe on the screen. The condition
for destructive interference is given by

) 1 o
0 =dsinf = (m + 5]/1, m=0,+1,£2, 13, ... (destructive interference) .(14.2.6)

In Figure 14.2.5, we show how a path difference of 6=A/2 (m=0 in Eq. (14.2.6))
results in destructive interference and 6 =A (m =1 in Eq. (14.2.5)) leads to constructive
interference.

Figure 14.2.5 (a) Destructive interference. (b) Constructive interference.

To locate the positions of the fringes as measured vertically from the central point O, in
addition to L >>d, we shall also assume that the distance between the slits is much
greater than the wavelength of the monochromatic light, d >> A . The conditions imply
that the angle 6 is very small, so that

sin@ ~ tan 6 :%. (14.2.7)

Substituting Eq. (14.2.7) into the constructive and destructive interference conditions
given in Egs. (14.2.5) and (14.2.6), the positions of the bright and dark fringes are,
respectively,

AL .
y, = m7, m=0,+1,+2,+3 ... (constructive interference), (14.2.8)

and

AL ..
y, =(m+1/ 2)7, m=0,+1,+2 %3 ... (destructive interference). (14.2.9)
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Example 14.1: Double-Slit Experiment

Suppose in the double-slit arrangement, d =0.150mm, L=120cm, A =833nm, and
y=2.00cm.

(a) What is the path difference & for the rays from the two slits arriving at point P ?
(b) Express this path difference in terms of A .

(c) Does point P correspond to a maximum, a minimum, or an intermediate condition?
Solutions:

(a) The path difference is given by 6 =dsinf. When L>>y, 6 is small and we can
make the approximation sin@ =tan8 = y/ L. Thus,

-2
5~d? =150x10*m) 22X 10TM ) 5010 m.
L 1.20m

(b) From the answer in part (a), we have

§ 2.50x10°m _

—=———=3.00,
A 833x107"m

hence 6 =3.001 .

(c) Because the path difference is an integer multiple of the wavelength, the intensity at
point P is a maximum.

14.3 Intensity Distribution

Consider the double-slit experiment shown in Figure 14.3.1.

’-l 4 .

Figure 14.3.1 Double-slit interference
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The total instantaneous electric field E at the point P on the screen is equal to the vector
sum of the two sources: E = El +E2. The magnitude of the Poynting vector flux S is
proportional to the square of the total field,

Sec E*=(E,+E,)’ =E} +E? +2E, -E,. (14.2.10)
Taking the time-average of S, the intensity / of the light at P is

I=(S)o< (E})+(E;)+2(E, -E,). (142.11)

The term 2<E1-E2> represents the correlation between the two light waves. For

incoherent light sources, since there is no definite phase relation between E, and E,, the

cross term vanishes, and the intensity due to the incoherent source is simply the sum of
the two individual intensities,

I

inc

=1 +1,. (14.2.12)

For coherent sources, the term 2<]7]1 -E2> is non-zero. In fact, for constructive

interference, E, = E,, and the resulting intensity is
1=41, (14.2.13)

which is four times greater than the intensity due to a single source. When destructive
interference takes place, E, =—E,, and <E1 -E2> o< —],, and the total intensity becomes

I1=1-21+1,=0, (14.2.14)
as expected.

Suppose that the waves emerged from the slits are coherent sinusoidal plane waves. Let
the electric field components of the wave from slits 1 and 2 at P be given by

E =E, sin(wt), (14.2.15)
and
E,=E,sin(wt+9¢), (14.2.16)

respectively, where the waves from both slits are assumed to have the same amplitude E, .

For simplicity, we have chosen the point P to be the origin, so that the kx dependence in
the wave function is eliminated. Because the wave from slit 2 has traveled an extra
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distance 6 to P, E, has an extra phase constant ¢ relative to E, , which traveled from
slit 1.

For constructive interference, a path difference of 6 =A would correspond to a phase shift
of ¢ =2m . This implies that the ratio of path difference to wavelength is equal to the ratio

of phase shift to 2,

(14.2.17)

S_¢
A 2

Therefore the phase shift is

¢:27n5=27ﬂdsin9. (14.2.18)

Assuming that both fields point in the same direction, the total electric field may be
obtained by using the superposition principle discussed in Section 13.5,

E=E, +E, = E,| sin(wf) +sin(wt + ¢) | = 2E, cos(¢ / 2)sin(et + ¢/ 2) (14.2.19)

where we have used the trigonometric identity

sinoc+sinﬁ:2sin(a;ﬁ)cos(a7_ﬁ]. (14.2.20)

The intensity [/ is proportional to the time-average of the square of the total electric field,
ec(E*Y=4Ecos (¢ 2)(sin (1 +9/2))=2E cos’(9/2).  (14.2.21)

Therefore the intensity is
I=1, cos’(¢/2), (14.2.22)

where /, is the maximum intensity on the screen. Substitute Eq. (14.2.18) into Eq.
(14.2.22) yielding
I=1, cos’(mdsin@/ 7). (14.2.23)

The plot of the ratio 7/ I as a function of dsin@/ A is shown in Figure 14.3.2.
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Figure 14.3.2 Intensity as a function of d'sinf/A

For small angle 6, using Eq. (14.2.7), the intensity can be rewritten as
nd
I=1cos’| —y|. 14.2.24
0 ( L yj ( )

Example 14.2: Intensity of Three-Slit Interference

Suppose a monochromatic coherent source of light passes through three parallel slits,
each separated by a distance d from its neighbor, as shown in Figure 14.3.3.

l)

Figure 14.3.3 Three-slit interference.

The waves have the same amplitude E; and angular frequency w, but a constant phase
difference ¢ =2mdsin6/A .

(a) Show that the intensity is

[ =

O |~

. 2
|:1+2COS(@]:| , (14.2.25)
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where /, is the maximum intensity associated with the primary maxima.

(b) What is the ratio of the intensities of the primary and secondary maxima?
Solutions:

(a) Let the three waves emerging from the slits be described by the functions

E = E, sin(wt), E, = E sin(wf + ¢), E, = E sin(wf +2¢) . (14.2.26)
Using the trigonometric identity
sinoc+sin[)’:2cos(a;ﬂ]sin(a;_ﬁj, (14.2.27)

the sum of E, and E; is
E, + E, = E, [ sin(wf) + sin(wt +2¢) | = 2E, cos(p)sin(wt +¢) . (14.2.28)
The total electric field at the point P on the screen is then the sum
E=E +E +E, =Esin(ot+¢)(2cos(¢)+1). (14.2.29)
The intensity is proportional to <E 2> ,
[ <E2> = E*(2cos(9) +1)° <sin2(a)t + ¢)> = %E02(2cos(¢) +1)%, (14.2.30)

where we have used <sin2 (a)t+¢)> =1/2. The maximum intensity /; is attained when
cos¢ =1. Thus,

2

I (1+ 2cos(¢))

= 14.2.31
. 5 (14.2.31)
Substitute ¢ =2ndsin6/ A into Eq. (14.2.31). Then the intensity is
. 2
I=%(l+2c0s¢)2 =%[1+2c0s(@ﬂ . (14.2.32)

(b) The interference pattern is shown in Figure 14.3.4.
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Figure 14.3.4 Intensity pattern for triple slit interference.

From the figure, we see that the minimum intensity is zero, and occurs when
cos¢ =—1/2. The condition for primary maxima is cos¢ =+1, which gives //1,=1. In

addition, there are also secondary maxima that are located at cos¢ =—1. The condition
implies ¢ = (2m+ 1)z, which implies that dsin@/A=(m+1/2), m=0,£1,£2,---. The
intensity ratiois //1,=1/9.

14.4 Diffraction
In addition to interference, waves also exhibit another property — diffraction, which is the
bending of waves as they pass by some objects or through an aperture. The phenomenon

of diffraction can be understood using the Huygens-Fresnel principle that states that

Every unobstructed point on a wavefront will act a source of secondary spherical waves.
The new wavefront is the surface tangent to all the secondary spherical waves.

Figure 14.4.1 illustrates the propagation of the wave based on the Huygens-Fresnel
principle.

Figure 14.4.1 Huygens-Fresnel principle.
According to the Huygens-Fresnel principle, light waves incident on two slits will spread

out and exhibit an interference pattern in the region beyond (Figure 14.4.2a). The pattern
is called a diffraction pattern. On the other hand, if no bending occurs and the light wave
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continue to travel in straight lines, then no diffraction pattern would be observed (Figure
14.4.2b).

Figure 14.4.2 (a) Spreading of light leading to a diffraction pattern. (b) Absence of
diffraction pattern if the paths of the light wave are straight lines.

We shall restrict ourselves to a special case of diffraction called Fraunhofer diffraction.
In this case, all light rays that emerge from the slit are approximately parallel to each
other. For a diffraction pattern to appear on the screen, a convex lens is placed between
the slit and screen to provide convergence of the light rays.

14.5 Single-Slit Diffraction
In our consideration of Young’s double-slit experiments, we have assumed the width of
the slits to be so small that each slit is a point source. In this section we shall take the

width of slit to be finite and see how Fraunhofer diffraction arises.

Let a source of monochromatic light be incident on a slit of finite width a, as shown in
Figure 14.5.1.
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Figure 14.5.1 Diffraction of light by a slit of width a.

In diffraction of Fraunhofer type, all rays passing through the slit are approximately
parallel. In addition, each portion of the slit will act as a source of light waves according
to the Huygens-Fresnel principle. We start by dividing the slit into two halves. At the first
minimum, each ray from the upper half will be exactly 180° out of phase with a
corresponding ray form the lower half. For example, suppose there are 100 point sources,
with the first 50 in the lower half, and 51 to 100 in the upper half. Source 1 and source 51
are separated by a distance a/2 and are out of phase with a path difference 6 =1/2.
Similar observation applies to source 2 and source 52, as well as any pair that are a
distance a/2 apart. Thus, the condition for the first minimum is

4no=2. (14.4.1)
2 2
Therefore
sin@ =&. (14.4.2)
a

Applying the same reasoning to the wavefronts from four equally spaced points a
distance a/4 apart, the path difference would be 6 =asin6/4, and the condition for
destructive interference is

sin@ =2. (14.4.3)
a

The argument can be generalized to show that destructive interference will occur when

asin@ =mA, m==l1,£2,+3,... (destructive interference) (14.4.4)

Figure 14.5.2 illustrates the intensity distribution for a single-slit diffraction. Note that
0 =0 is a maximum.
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Figure 14.5.2 Intensity distribution for a single-slit diffraction.

By comparing Eq. (14.4.4) with Eq. (14.2.5) we see that the condition for minima of a
single-slit diffraction becomes the condition for maxima of a double-slit interference
when the width of a single slit a is replaced by the separation between the two slits d
The reason is that in the double-slit case, the slits are taken to be so small that each one is
considered as a single light source, and the interference of waves originating within the
same slit can be neglected. On the other hand, the minimum condition for the single-slit
diffraction is obtained precisely by taking into consideration the interference of waves
that originate within the same slit.

Example 14.3: Single-Slit Diffraction

A monochromatic light with a wavelength of A= 600 nm passes through a single slit
which has a width of 0.800 mm.

(a) What is the distance between the slit and the screen be located if the first minimum in
the diffraction pattern is at a distance 1.00 mm from the center of the screen?

(b) Calculate the width of the central maximum.
Solutions:

(a) The general condition for diffraction destructive interference is
. A
sinf =m— m==x1, £2, £3, ---

a

For small 6, we employ the approximation sinf =tan8 =y /L, which yields
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The first minimum corresponds to m=1. If y,=1.00 mm, then

_ay, (8.00x10™* m)(1.00x10™* m)

=1.33m.
mA 1(600x10~° m)

L

(b) The width of the central maximum is (see Figure 14.5.2)

w=2y =2(1.00x10"* m)=2.00 mm.

14.6 Intensity of Single-Slit Diffraction

How do we determine the intensity distribution for the pattern produced by single-slit
diffraction? To calculate this, we must find the electric field by adding the field
contributions from each point.

Let’s divide the single slit into N small zones each of width Ay=a/N, as shown in

Figure 14.6.1. The convex lens is used to bring parallel light rays to a focal point P on
the screen. We shall assume that Ay << A so that all the light from a given zone is in

phase. Two adjacent zones have a relative path difference, 6 = Aysin@. The relative
phase shift AB is given by the ratio

AB_0 _Avsinb o x g 27\ ing. (14.5.1)
2 A A A
= =g

. ': s | -

AV o

o 33
a s o

* Ay sing

Figure 14.6.1 Single-slit Fraunhofer diffraction
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Suppose the wavefront from the first point (counting from the top) arrives at the point P
on the screen with an electric field given by

E, = E, sin(r). (14.5.2)

The electric field from point 2 adjacent to point 1 will have a phase shift AB, and the
field is
E, = E sin(wt+AB). (14.5.3)

Because each successive component has the same phase shift relative to the previous one,
the electric field from point N is

E, = E sin(ot+(N - 1)AB). (14.5.4)
The electric field is the sum of each individual contribution,
E=E+E +E =E, [sin(a)t) +sin(wt + AB) +---+ sin(wt + (N — l)A[)’)] (14.5.5)

The total phase shift between the point N and the point 1 is
ﬁ:NAﬁ:%”NAysine:%”asine, (14.5.6)

where NAy =a. The expression for the total field given in Eq. (14.5.5) can be simplified
as follows. Apply the trigonometric relation cos(a — ) —cos(a+ ) =2sinosin 3 :

cos(wt —AB/2)—cos(wt +AB/2) =2sinwtsin(AB/2)
cos(wt + AP /2)—cos(wt +3AB/2) =2sin(wt + AB)sin(AB /2)
cos(wt +3AL /2)—cos(wt +5AB /2) = 2sin(wt +2AB)sin(AS / 2) (14.5.7)
cos[wt + (N —1/2)AB]—cos[wt + (N —3/2)AB]=2sin[ewt +(N —1)AB]sin(AB / 2)
Adding all the terms individual equations together in Eq. (14.5.7) yields

cos(wt —AB/2)—cos[wt— (N —1/2)AB]

14.5.8
=2sin(AB/ 2)[sina)t + sin(a)t + Aﬁ) 4+t sin(a)t +(N - l)Aﬁ)] ( )
The two terms on the left-hand-side in Eq. (14.5.8) combine to yield
cos(wt — AP /2)—cos[wt— (N —1/2)A
( B/2) [ = ( )AB] (14.5.9)

=2sin(wt + (N —=1)AB/ 2)sin(NAB/ 2).
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Substitute Eq. (14.5.9) into Eq. (14.5.8), yielding

[ sinr + sin(@t + AB) + -+ sin(ot + (N = 1)AB) |
_sinfot+(N —1)AB/2]sin(B/2) (14.5.10)
B sin(AB/ 2) '

[See Appendix for alternative approaches to simplifying Eq. (14.5.5).]

We can determine the electric field by substituting Eq. (14.5.10) into Eq. (14.5.5),

B sin(8/2) | . 3
E=E, {—Sin(Aﬁ / 2)}sm(a)t +(N=1)AB/2). (14.5.11)

The intensity / is proportional to the time average of E’,

(£*)=E, [M} (sin” (ot + (N —1D)AB/ 2)) =

I sin(f/2)
| sin(AB/2)

Lp| s } (14.5.12)
2 ' sin(AB/2)

We can express the intensity as

[:[—‘Z[M} , (14.5.13)
N~ | sin(AB/2)

where the extra factor N? has been inserted to ensure that /, corresponds to the intensity
at the central maximum f =0 (6 =0). In the limit where A — 0,

Nsin(AB/2)=NAB/2=B/2, (14.5.14)
In this limit, the intensity is
in(8/2) | in(7rasin®/ 1) |
=1 | SUP/D) | _ | sin(rasind/ A) | (14.5.15)
B/2 masin®/ A

In Figure 14.6.2, we plot the ratio of the intensity ///, as a function of /2.
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Figure 14.6.2 Intensity of the single-slit Fraunhofer diffraction pattern.

From Eq. (14.5.15), we determine that the condition for minimum intensity is
T .
zasmem =mn, m==x1,£2,£3,..-.

We can then determine the various angles 6 = such that the intensity is minimum,

) A
sin =m—, m=x,£2,£3,.--| (14.5.16)
a

In Figure 14.6.3 the intensity is plotted as a function of the angle 6, for a=A and
a=2A. We see that as the ratio a/A grows, the peak becomes narrower, and more light
is concentrated in the central peak. In this case, the variation of /, with the width a is

not shown.
11,
|
a=A
’IX ———— (] 2&
0.6
0.4
0.2
= S Y TRSS T TS I 7T 4

Figure 14.6.3 Intensity of single-slit diffraction as a function of 6 for a=A and a =2A1.
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14.7 Intensity of Double-Slit Diffraction Patterns

In the previous sections, we have seen that the intensities of the single-slit diffraction and
the double-slit interference are given by,

single-slit diffraction,

. . 2
sin(rrasinf/ L)
I=1 : ,
rwasing/ A

=1, cos’(¢/2)= 1, cos’(ndsin@/ A), double-slit interference .

Suppose we now have two slits, each having a width a, and separated by a distance d .
The resulting interference pattern for the double-slit will also include a diffraction pattern
due to the individual slit. The intensity of the total pattern is the product of the two
functions,

2
sin(n’asin@//’t)} (146.1)

I=1 cos’(ndsin@/ A

o cos( ) masin@/ A
The first and the second terms in the above equation are referred to as the interference
factor and the diffraction factor, respectively. While the former yields the interference
substructure, the latter acts as an envelope that sets limits on the number of the
interference peaks (see Figure 14.7.1).

Interference substructure Diffraction envelope

Determined by slit width a

LN ,Z_\__./ ______  __ NI AT g

-2 /4 | ‘ V4 2z
-+ | |-
{
)\ N
Determined by separation d between slits

Figure 14.7.1 Double-slit interference with diffraction.

We have seen that the m interference maximum occurs when dsin@ = mA , while the
condition for the first diffraction minimum is asin@ =A. A particular interference
maximum with order number m may coincide with the first diffraction minimum. The
value of m depends only on the spacing between slits and the size of opening. We first
form the ratio
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dsin@ _m_/l

= 14.6.2
asinf A ( )
We now solve Eq. (14.6.2) for the value of m,
m =1. (14.6.3)
a

Since the mth fringe is not seen, the number of fringes on each side of the central fringe is
m—1. Thus, the total number of fringes in the central diffraction maximum is

N=2(m+1)+1=2m-1. (14.6.4)
14.8 Diffraction Grating

A diffraction grating consists of a large number N of slits each of width a and separated
from the next by a distance d , as shown in Figure 14.8.1.

screen

- P

v 4
- '77

T

(/ - V

18

A v,

5 d sin@

Figure 14.8.1 Diffraction grating

If we assume that the incident light is planar and diffraction spreads the light from each
slit over a wide angle so that the light from all the slits will interfere with each other. The
relative path difference between each pair of adjacent slits is 6 =d sin@, similar to the
calculation we made for the double-slit case. If this path difference is equal to an integral
multiple of wavelengths then all the slits will constructively interfere with each other and
a bright spot will appear on the screen at an angle 6 . Thus, the condition for the principal
maxima is given by

dsinf =mA, m=0,+1,£2,£3,.... (14.7.1)

If the wavelength of the light and the location of the m-order maximum are known, the
distance d between slits may be readily deduced.
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(@) (b)

Figure 14.8.2 Intensity distribution for a diffraction grating for (a) N =10 and (b)
N =30.

The location of the maxima does not depend on the number of slits, N . However, the
maxima become sharper and more intense as N is increased. The width of the maxima
can be shown to be inversely proportional to N . In Figure 14.8.2, we show the intensity
distribution as a function of /2 for diffraction grating with N =10 and N =30. Notice

that the principal maxima become sharper and narrower as N increases.

The observation can be explained as follows: suppose an angle 6 (recall that
B =2rasin@/A) which initially gives a principal maximum is increased slightly, if
there were only two slits, then the two waves will still be nearly in phase and produce
maxima which are broad. However, in a diffraction grating with a large number of slits,
even though 6 may only be slightly deviated from the value that produces a maximum, it
will be exactly out of phase with a light wave emerging from some other slit. Because a
diffraction grating produces peaks that are much sharper than the two-slit system, it gives
a more precise measurement of the wavelength.

14.9 Summary

* Interference is the combination of two or more waves to form a composite wave
based on the superposition principle.

* In Young’s double-slit experiment, where a coherent monochromatic light
source with wavelength A emerges from two slits that are separated by a distance
d , the condition for constructive interference is

0 =dsin@ =mA, m=0,+1,£2,4+3,..- (constructive interference),

where m is called the order number. The condition for destructive interference
is
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dsinf =(m+1/2)A, m=0,x1,£2,£3,.-- (destructive interference) .
The intensity in the double-slit interference pattern is
_ 2 :
I=1 cos”(ndsin6/ 1),
where /, is the maximum intensity on the screen.

Huygens-Fresnel principle that states that every unobstructed point on a
wavefront will act a source of secondary spherical waves. The new wavefront is
the surface tangent to all the secondary spherical waves.

Diffraction is the bending of waves as they pass by an object or through an

aperture. In a single-slit Fraunhofer diffraction, the condition for destructive
interference is

) A .
sin@ =m—, m==x1,£2,+3..- (destructive interference),
a

where a is the width of the slit. The intensity of the interference pattern is

I=1

0

sin(B/2) ] , [sinGrasing/ ) ’
B/2 | °| masin@/A |’

where B =2masin®/A is the phase difference between rays from the upper end
and the lower end of the slit, and / is the intensity at 6 =0.

For two slits each having a width a and separated by a distance d , the
interference pattern will also include a diffraction pattern due to the single slit,
and the intensity is

. . 2
I=1, cos? (ndsin@/l){sm(ﬂasme/l)} .

masin@/ A

14.10 Appendix: Computing the Total Electric Field

In Section 14.6 we used a trigonometric relation and obtained the total electric field for a
single-slit diffraction. Below we show two alternative approaches of how Eq. (14.5.5)
can be simplified.

(1) Complex representation:
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The total field £ may be regarded as a geometric series. We begin with the Euler

formula
o ( n 2n

. = (7v)" ln 2n+1 .
e :Z(UC) :z_“ o z((zi_i_l)' =cosx+isinx. (14.9.1)

In the Euler formula, sinx = Im(e™), where the notation “Im” stands for the imaginary
part. We can write the sum of terms that appears on the right-hand-side of Eq. (14.5.5) as

sin(wt) + sin(@t + AB) + ...+ sin(wt + (N — 1)AB)

— Im| & + @+ 4 4 ei(wt+(N—l)Aﬂ)] _ Im[eiwt(l_l_ e 4 ei(N—l)Aﬁ):|

1 Vo8 | _iNABI2( iNAB/2 _ ~iNAB/2
=Im e’“”— D B G e ) (14.9.2)
1— e _elAﬂ/Z(elAﬁ/2 _ e—zAﬁ/Z)

_ i(@t+(N-1)AB/2) sin(f3/2) sin(3/2)
=Im|e —sin(Aﬂ ; 2)} =sin(wt+ (N —-1)AB/ 2) A/ 2)’

where we have used two mathematical results,

N n+l
Sa' =lratd+..=——, |a|<], (14.9.3)
e l-a
and
(eiNAﬁ/Z _ e—iNAﬁ/Z) _ sin(ﬂ / 2) (14 0 4)
(™P? — B2y sin(AB/2)’ o
where = NAB.
The total electric field then becomes
E=FE {M}Sin(wt +(N-1DAB/2) (14.9.5)
" sin(AB/2) ’

which is the same as that given in Eq. (14.5.12).

(2) Phasor diagram:
Alternatively, we may also use phasor diagrams to obtain the time-independent portion of

the resultant field. Before doing this, let’s first see how phasor addition works for two
wave functions.
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Figure 14.10.1 Addition of two phasors.
Let E, = E;sin(ax) and E, = E, sin(o + @), with the sum of the two fields given by
E=E+E,=E sin(a)+E, sin(o+¢@)=E sin(a+9"), (14.9.6)
where ¢' is a phase constant that we will determine.

Using the phasor approach, the fields £, and E, are represented by two-dimensional
vectors E, and E,, respectively. The addition of E = E, + E, is shown in Figure 14.10.1.

The idea of this geometric approach is based on the fact that when adding two vectors,
the components of the resultant vector are equal to the sum of the individual components.
The vertical component of E is the resultant field £ and is the sum of the vertical

projections of E, and E, .

If the two fields have the same amplitude E,, = E,,, the phasor diagram becomes
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Figure 14.10.2 Addition of two phasors with the same amplitude.

From the diagram, we see that n+¢ = and 2¢'+n =7x . We can then solve for the new
phase constant,

T n n 1 (0]
== ——=———(T-¢)==. 14.9.7
0'="-=0 5 m=0)=1 (14.9.7)
From Figure 14.10.2, we have that
E, /2
cosp'=—2—. (14.9.8)
10
Combining Egs. (14.9.7) and (14.9.8), we can solve for the amplitude
E,=2E cos¢'=2E  cos(¢p/2). (14.9.9)
The resultant field is then
E=2E cos(¢/2)sin(x+¢/2). (14.9.10)

Alternatively the sum of the fields can be determined using the trigonometric identity
given in Eq. (14.2.27).

Now let’s turn to the situation where there are N sources, as in our calculation of the

single-slit diffraction intensity in Section 14.6. By setting ¢t =0 in Eq. (14.5.5), the time-
independent part of the total field is

E=E+E,+-E, =E,|sin(AB)+--+sin(N - 1)AB)]. (14.9.11)

The corresponding phasor diagram is shown in Figure 14.10.3. Notice that all the phasors
lie on a circular arc of radius R, with each successive phasor differed in phase by Af .

14-27



R

Figure 14.10.3 Phasor diagram for determining the time-independent portion of E'.

From the Figure 14.10.3, we determine that

sinngoT/z. (14.9.12)

Because the length of the arc is NE,; = Rf3 , we have

E, :2Rsin(ﬁ)=2%sin(ﬁjzﬂo {M}, (14.9.13)
2 B 2 AB/2

where B = NAB. The result is completely consistent with that obtained in Eq. (14.5.11).

The intensity is proportional to £,

[zf_oz[sm(_ﬁ”)}z s [MT (14.9.14)
N AB/2 B/2

which reproduces the result in Eq. (14.5.15)

14.11 Solved Problems
14.11.1 Double-Slit Experiment
In Young’s double-slit experiment, suppose the separation between the two slits is

d =0.320 mm . If a beam of 500-nm light strikes the slits and produces an interference
pattern. How many maxima will there be in the angular range —45.0° <60 <45.0°?
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Solution: On the viewing screen, light intensity is a maximum when the two waves
interfere constructively. This occurs when

dsinf =mA, m=0,£1,£2,--, (14.10.1)

where A is the wavelength of the light. At 6=45.0°, d=3.20x10" m , and
A =500x10" m, we obtain
dsinf
m=

=4525. (14.10.2)

Thus, there are 452 maxima in the range 0 <0 <45.0°. By symmetry, there are also 452
maxima in the range —45.0° <0 < 0. Including the one for m =0 straight ahead, the total
number of maxima is

N =452+452+1=905. (14.10.3)
14.11.2 Phase Difference

In the double-slit interference experiment shown in Figure 14.2.3, suppose
d=0.100mm and L=1.00m , and the incident light is monochromatic with a

wavelength A =500 nm .

(a) What is the phase difference between the two waves arriving at a point P on the
screen when 6 =0.800°?

(b) What is the phase difference between the two waves arriving at a point P on the
screen when y =4.00 mm ?

(c) If ¢ =1/3rad, what is the value of 6 ?

(d) If the path difference is 6 = A/4, what is the value of 6 ?
Solutions:

(a) The phase difference ¢ between the two wavefronts is given by

2r 2
=—5="—dsinb. 14.10.4
¢ n n ( )
With 6 =0.800°, we have
2n 4 .
0] (1.00x107 m)sin(0.800°) =17.5 rad. (14.10.5)

~ (5.00x10" m)
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(b) When 6 is small, we make use of the approximation sinf =tanf = y/ L. Thus, the
phase difference becomes

2 (Y
¢= 1 d(Lj. (14.10.6)

For y=4.00mm, we have

-3
0= 27 ———(1.00x10™*m) 400x107m | 503 ad . (14.107)
(5.00x10""m) 1.00m
(c) For ¢=1/3 rad, we have
1 rad:z—”dsinez2—”7(1.00><10*‘m)sm9. (14.10.8)
3 P (5.00x 107 m)

Therefore 6 =0.0152°.

(d) For 6 =dsin@ =A/4, we have

-7
0 =sin”' a =sin”' 5'00X1O_4m =0.0716°. (14.10.9)
4d 4(1.00x10™* m)

14.11.3 Constructive Interference

Coherent light rays of wavelength A are illuminated on a pair of slits separated by
distance d at an angle 0,, as shown in Figure 14.11.1. If an interference maximum is

formed at an angle 0, at a screen far from the slits, determine the relationship between 6, ,
0,,d and 1.
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o

Figure 14.11.1
Solution: The path difference between the two rays is
0 =dsinf, —dsin0,. (14.10.10)

The condition for constructive interference is 6 = mA, where m=0, 1, +2,--- is the
order number. Thus, we have
d(sinB, —sin@,) = mA . (14.10.11)

14.11.4 Intensity in Double-Slit Interference

Let the intensity on the screen at a point P in a double-slit interference pattern be 60.0%
of the maximum value.

(a) What is the minimum phase difference (in radians) between sources?

(b) For the minimum phase difference, what is the corresponding path difference if the
wavelength of the light is A =500 nm ?

Solution:
(a) The average intensity is given by
I=1, cos’(¢/2), (14.10.12)

where /, is the maximum light intensity. Thus,

0.60 = cos*(¢/ 2). (14.10.13)
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Therefore the phase difference is
¢=2cos™ (I /1,)=2cos” (v0.60)=78.5°=1.37 rad . (14.10.14)
(b) The phase difference ¢ is related to the path difference 6 and the wavelength A by

_A¢ _ (500nm)(1.37rad)
o 2r

)

=109 nm. (14.10.15)

14.11.5 Second-Order Bright Fringe

A monochromatic light is incident on a single slit of width 0.800 mm, and a diffraction
pattern is formed at a screen that is 0.800 m away from the slit. The second-order bright
fringe is at a distance 1.60 mm from the center of the central maximum. What is the
wavelength of the incident light?

Solution: The general condition for destructive interference is

sin@ =mZ~=, (14.10.16)

Q>
N~ =

where the small-angle approximation has been made. Thus, the position of the mth order
dark fringe measured from the central axis is

y =m==. (14.10.17)
a

Let the second bright fringe be located halfway between the second and the third dark
fringes. Therefore,

AL SAL

1 1
yz”:E(y2+y3):5(2+3)7:E' (14.10.18)

The approximate wavelength of the incident light is then

_2ay, 2(0.800x10”° m)(1.60x10"° m)
5L 5(0.800 m)

A =6.40x10 7 m. (14.10.19)

14.11.6 Intensity in Double-Slit Diffraction

Coherent light with a wavelength of A =500 nm is sent through two parallel slits, each
having a width a=0.700 um . The distance between the centers of the slits is
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d =2.80 um. The screen has a semi-cylindrical shape, with its axis at the midline
between the slits.

(a) Find the angles of the interference maxima on the screen. Express your answers in
terms of the angles the location of the maxima make with respect to the bisector of the
line joining the slits.

(b) How many bright fringes appear on the screen?

(c) For each bright fringe, find the intensity, measured relative to the intensity /,
associated with the central maximum.

Solutions:

(a) The condition for double-slit interference maxima is given by

dsin@ =mA m=0, £1, £2,---. (14.10.20)
Therefore

0 =sin" [%’1) (14.10.21)

With 1=5.00x10"m and d =2.80x10°m, Eq. (14.10.21) becomes

5.00%107
0 =sin"| m > — T |_§in"(0.179 m). (14.10.22)
" 2.80x10°m
The solutions are

9, =0° 6, =sin™(+0.179) = +10.3°

9, =sin" (£0.357) = 20.9° 0, =sin™ (£0.536) = +32.4°
: : (14.10.23)

9., =sin" (+0.714) = +45.6° 6, =sin™ (+0.893) = +63.2°

6., =sin"'(+¥1.07) = no solution.
Thus, we see that there are a total of 11 interference maxima.

(b) The general condition for single-slit diffraction minima is asin@ =mA , thus
Gm:sin"(m/'t/a) m==11, £2, ---. (14.10.24)

With 1=5.00x10"mand a=7.00x10"m, Eq. (14.10.24) becomes
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5.00x107"m

0 :SiIf1 m P
" 7.00x10""m

The solutions are
0, = sin’l(i 0.714)=+45.6°

6,, =sin"'(+ 1.43) = no solution.

] =sin"'(0.714 m).

(14.10.25)

(14.10.26)

Since these angles correspond to dark fringes, the total number of bright fringes is

N=11-2=9.

(c) The intensity on the screen is given by

. . 2
sin (7a sin 6/ A)
I=1, : :
masin 0/ A
where [ is the intensity at 6 =0.
(i) At 6 =0, we have the central maximum and //7,=1.00.

(i) At 6=%10.3°, we have that

7(0.700 ym )sin 10.3°
0.500 um

masin@/ A==
Therefore

. 572
i_[_'_sm 45.0 } —0811.
1, 0.785
(iii) At 6= 20.9°, we have
masin O/ A==+1.57 rad =190.0°.

The intensity ratio is
1 [}
_ [ 4 sin 90.0

2
= } =0.406.
1.57

1

]0

(iv) At 6=132.4°, we have
masin O/ A=12.36 rad==+135°

The intensity ratio is

=10.785 rad = £45.0°.

(14.10.27)

(14.10.28)

(14.10.29)

(14.10.30)

(14.10.31)

(14.10.32)
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. )
i:[i sin 135 } =0.0901. (14.10.33)
1, 2.36
(v) At 6=%63.2°, we have
ftasin 6/ A=+3.93 rad = +225° (14.10.34)

The intensity ratio is

1,

I [+ sin 225

2
= =0.0324. (14.10.35)
3.93

14.12 Conceptual Questions

1.

In Young’s double-slit experiment, what happens to the spacing between the
fringes if

(a) the slit separation is increased?
(b) the wavelength of the incident light is decreased?
(c) the distance between the slits and the viewing screen is increased?

In Young’s double-slit experiment, how would the interference pattern change if
white light were used?

Explain why the light from the two headlights of a distant car does not produce
an interference pattern.

What happens to the width of the central maximum in a single-slit diffraction if
the slit width is increased?

In a single-slit diffraction, what happens to the intensity pattern if the slit width
becomes narrower and narrower?

In calculating the intensity in double-slit interference, can we simply add the
intensities from each of the two slits?

14.13 Additional Problems

14.13.1 Double-Slit Interference

In the double-slit interference experiment, suppose the slits are separated by d =1.00 cm
and the viewing screen is located at a distance L =1.20 m from the slits. Let the incident
light be monochromatic with a wavelength A =500 nm .
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(a) Calculate the spacing between the adjacent bright fringes.

(b) What is the distance between the third-order fringe and the centerline?

14.13.2 Interference-Diffraction Pattern

In the double-slit Fraunhofer interference-diffraction experiment, 0.20 mm separates the
slits, which are 0.010 mm wide. The incident light is monochromatic with a wavelength
A =600 nm . How many bright fringes are there in the central diffraction maximum?

14.13.3 Three-Slit Interference

Suppose a monochromatic coherent light source of wavelength A passes through three
parallel slits, each separated by a distance d from its neighbor.

(a) Show that the positions of the interference minima on a viewing screen a distance
L >>d away is approximately given by

yn:ni_d’ n:1,2’475,7785]‘0,.‘.’

where 7 is not a multiple of 3.

(b) Let L=1.20m, A =450 nm, and d =0.10 mm. What is the spacing between the
successive minima?

14.13.4 Intensity of Double-Slit Interference

In the double-slit interference experiment, suppose the slits are of different size, and the
fields at a point P on the viewing screen are

E =E sin(wf), E,=E,ssin(wf+¢)

Show that the intensity at P is
I=1+1,+2I1,cos¢.

where /, and I, are the intensities due to the light from each slit.

14.13.5 Secondary Maxima

In a single-slit diffraction pattern, we have shown in 14.6 that the intensity is
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: 2 , , 2
=1 sin(/2) | _ ;| sin(zasin6/ A)
L B2 ~ ' masin@/A |

(a) Explain why the condition for the secondary maxima is not given by
B,/2=(m+1/2)xr, m=12.3,-.

(b) By differentiating the expression above for I, show that the condition for secondary
maxima is

E: tan ﬁ .

2 2

(c) Plot the curves y=f3/2 and y =tan(f3/2). Using a calculator which has a graphing
function, or mathematical software, find the values of B at which the two curves
intersect, and hence, the values of f for the first and second secondary maxima.

Compare your results with 8 /2= (m+1/2)r.

14.13.6 Interference-Diffraction Pattern

If there are 7 fringes in the central diffraction maximum in a double-slit interference
pattern, what can you conclude about the slit width and separation?
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