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Driven RLC Circuits 
 
 
12.1 AC Sources 

 
In Chapter 10 we learned that changing magnetic flux could induce an emf according to 
Faraday’s law of induction. In particular, if a coil rotates in the presence of a magnetic 
field, the induced emf varies sinusoidally with time and leads to an alternating current 
(AC), and provides a source of AC power. The symbol for an AC voltage source is  
 

 
An example of an AC source is 
 
   V (t) =V0 sin(ωt) , (12.1.1) 
 
where the maximum value 

� 

V0 is called the amplitude. The voltage varies between 0V  and 

0V−  since a sine function varies between +1 and −1. A graph of voltage as a function of 
time is shown in Figure 12.1.1. The phase of the voltage source is  φV =ωt , (the phase 
constant is zero in Eq. (12.1.1)). 
 

 
 

Figure 12.1.1 Sinusoidal voltage source 
 
The sine function is periodic in time.  This means that the value of the voltage at time t  
will be exactly the same at a later time t t T′ = +  where T  is the period.  The frequency, 
f , defined as 1/f T= , has the unit of inverse seconds ( s

-1 ), or hertz ( Hz ). The angular 
frequency is defined to be 2 fω π= . 
 
When a voltage source is connected to a  RLC  circuit, energy is provided to compensate 
the energy dissipation in the resistor, and the oscillation will no longer damp out. The 
oscillations of charge, current and potential difference are called driven or forced 
oscillations.   
 
After an initial “transient time,” an AC current will flow in the circuit as a response to the 
driving voltage source. The current in the circuit is also sinusoidal, 
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 0( ) sin( )I t I tω φ= − , (12.1.2) 
 
and will oscillate with the same angular frequency ω  as the voltage source, has 
amplitude 0I , phase  φ I =ωt −φ , and phase constant φ  that depends on the driving 
angular frequency. Note that the phase constant is equal to the phase difference between 
the voltage source and the current 
 
   Δφ ≡ φV −φ I =ωt − (ωt −φ) = φ . (12.1.3) 
 
12.2 AC Circuits with a Source and One Circuit Element 

 
Before examining the driven RLC circuit, let’s first consider cases where only one circuit 
element (a resistor, an inductor or a capacitor) is connected to a sinusoidal voltage source. 
 
12.2.1 Purely Resistive Load 
 
Consider a purely resistive circuit with a resistor connected to an AC generator with AC 
source voltage given by   V (t) =V0 sin(ωt) , as shown in Figure 12.2.1. (As we shall see, a 
purely resistive circuit corresponds to infinite capacitance C = ∞ and zero inductance 

0L = .) 

 
 

Figure 12.2.1 A purely resistive circuit 
 
We would like to find the current through the resistor, 
 
   IR (t) = IR0 sin(ωt −φR ) . (12.2.1) 
 
Applying Kirchhoff’s loop rule yields  
 
   V (t) − IR (t)R = 0 , (12.2.2) 
 
where   VR (t) = IR (t)R  is the instantaneous voltage drop across the resistor. The 
instantaneous current in the resistor is given by 
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IR (t) = V (t)

R
=

V0 sin(ωt)
R

= IR0 sin(ωt) . (12.2.3) 

 
Comparing Eq. (12.2.3) with Eq. (12.2.1), we find that the amplitude is 
 

 
  
IR0 =

VR0

R
=

VR0

X R

 (12.2.4) 

 
where   VR0 =V0  , and  
  X R = R . (12.2.5) 
 
The quantity  X R  is called the resistive reactance, to be consistent with nomenclature that 
will introduce shortly for capacitive and inductive elements, but it is just the resistance. 
The key point to recognize is that the amplitude of the current is independent of the 
driving angular frequency. Because   φR = 0 , ( )RI t  and ( )RV t  are in phase with each 
other, i.e. they reach their maximum or minimum values at the same time, the phase 
constant is zero,  
   φR = 0 . (12.2.6) 
 
The time dependence of the current and the voltage across the resistor is depicted in 
Figure 12.2.2(a). 
 

 
(a)  

(b) 
 
Figure 12.2.2 (a) Time dependence of ( )RI t  and ( )RV t  across the resistor. (b) Phasor 
diagram for the resistive circuit. 
 
The behavior of ( )RI t  and ( )RV t  can also be represented with a phasor diagram, as 
shown in Figure 12.2.2(b). A phasor is a rotating vector having the following properties; 
 
(i) length: the length corresponds to the amplitude. 
 
(ii) angular speed: the vector rotates counterclockwise with an angular speed ω.   
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(iii) projection: the projection of the vector along the vertical axis corresponds to the 
value of the alternating quantity at time t. 
 
We shall denote a phasor with an arrow above it. The phasor 0RV


 has a constant 

magnitude of 0RV . Its projection along the vertical direction is   VR0 sin(ωt) , which is 
equal to ( )RV t , the voltage drop across the resistor at time t . A similar interpretation 

applies to 0RI


 for the current passing through the resistor. From the phasor diagram, we 
readily see that both the current and the voltage are in phase with each other. 
 
The average value of current over one period can be obtained as: 
 

 
  

IR (t) =
1
T

IR (t)dt
0

T

∫ =
1
T

IR0 sin(ωt) dt
0

T

∫ =
IR0

T
sin

2πt
T

⎛
⎝⎜

⎞
⎠⎟

 dt
0

T

∫ = 0 . (12.2.7) 

 
This average vanishes because 
 

 
  

sin(ωt) =
1
T

sin(ωt) dt
0

T

∫ = 0 . (12.2.8) 

 
Similarly, one may find the following relations useful when averaging over one period, 
 

 

  

cos(ωt) =
1
T

cos(ωt) dt
0

T

∫ = 0,

sin(ωt)cos(ωt) =
1
T

sin(ωt)cos(ωt) dt
0

T

∫ = 0,

sin2(ωt) =
1
T

sin2(ωt) dt
0

T

∫ =
1
T

sin2 2πt
T

⎛
⎝⎜

⎞
⎠⎟

 dt
0

T

∫ =
1
2

,

cos2(ωt) =
1
T

cos2(ωt) dt
0

T

∫ =
1
T

cos2 2πt
T

⎛
⎝⎜

⎞
⎠⎟

 dt
0

T

∫ =
1
2

.

 (12.2.9) 

 
From the above, we see that the average of the square of the current is non-vanishing: 
 

 2 2 2 2 2 2 2
0 0 00 0 0

1 1 1 2 1( ) ( ) sin sin
2

T T T

R R R R R
tI t I t dt I t  dt I  dt I

T T T T
πω ⎛ ⎞= = = =⎜ ⎟⎝ ⎠∫ ∫ ∫ . (12.2.10) 

 
It is convenient to define the root-mean-square (rms) current as 
 

 2 0
rms ( )

2
R

R
II I t= =  (12.2.11) 
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In a similar manner, the rms voltage can be defined as 
 

 2 0
rms ( )

2
R

R
VV V t= = . (12.2.12) 

 
The rms voltage supplied to the domestic wall outlets in the United States is 

rms 120 VV = at a frequency  60 Hzf = .  
 
The power dissipated in the resistor is 
 
 2( ) ( ) ( ) ( )R R R RP t I t V t I t R= = . (12.2.13) 
 
The average power over one period is then 
 

 
2

2 2 2 rms
0 rms rms rms

1( ) ( )
2R R R

VP t I t R I R I R I V
R

= = = = = . (12.2.14) 

 
 
12.2.2 Purely Inductive Load 
 
Consider now a purely inductive circuit with an inductor connected to an AC generator 
with AC source voltage given by   V (t) =V0 sin(ωt) , as shown in Figure 12.2.3. As we 
shall see below, a purely inductive circuit corresponds to infinite capacitance C = ∞  and 
zero resistance 0R = . 

 
 

Figure 12.2.3 A purely inductive circuit  
 
We would like to find the current in the circuit, 
 
   IL(t) = IL0 sin(ωt −φL ) . (12.2.15) 
  
Applying the modified Kirchhoff’s rule for inductors, the circuit equation yields 
 

 ( ) ( ) ( ) 0L
L

dIV t V t V t L
dt

− = − = . (12.2.16) 
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where we define   VL(t) = LdIL / dt . Rearranging yields 
 

 
  

dIL

dt
=

V (t)
L

=
VL0

L
sin(ωt) , (12.2.17) 

 
where 0 0LV V= . Integrating Eq. (12.2.17), we find the current is 
 

 

  

IL(t) = dIL∫ =
VL0

L
sin(ωt) dt∫ = −

VL0

ωL
cos(ωt) =

VL0

ωL
sin(ωt −π / 2)

= IL0 sin(ωt −π / 2).
, (12.2.18) 

 
where we have used the trigonometric identity   −cos(ωt) = sin(ωt −π / 2) . Comparing Eq. 
(12.2.18) with Eq. (12.2.15), we find that the amplitude is 
 

 
  
IL0 =

VL0

ωL
=

VL0

X L

, (12.2.19) 

 
where the inductive reactance,  X L , is given by 
 
 LX Lω= . (12.2.20) 
 
The inductive reactance has SI units of ohms (Ω ), just like resistance. However, unlike 
resistance, LX depends linearly on the angular frequency ω . Thus, the inductance 
reactance to current flow increases with frequency. This is due to the fact that at higher 
frequencies the current changes more rapidly than it does at lower frequencies. On the 
other hand, the inductive reactance vanishes as ω    approaches zero.  
 
The phase constant,  φL , can also be determined by comparing Eq. (12.2.18) to Eq. 
(12.2.15), and is given by 

 
  
φL = +

π
2

. (12.2.21) 

 
The current and voltage plots and the corresponding phasor diagram are shown in Figure 
12.2.4. 
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(a) 
 

(b) 
 
Figure 12.2.4 (a) Time dependence of ( )LI t  and ( )LV t  across the inductor. (b) Phasor 
diagram for the inductive circuit. 
 
As can be seen from the figures, the current ( )LI t  is out of phase with ( )LV t  by 

  φL = π / 2 ; it reaches its maximum value one quarter of a cycle later than ( )LV t .  
 

 

The current lags voltage by π  / 2 in a purely inductive circuit 
 

 
The word “lag” means that the plot of ( )LI t  is shifted to the right of the plot of ( )LV t  in 
Figure 12.2.4 (a), whereas in the phasor diagram the phasor    


IL(t)  is “behind” the phasor 

for    


VL(t) as they rotate counterclockwise in Figure 12.2.4(b). 
 
12.2.3 Purely Capacitive Load  
 
Consider now a purely capacitive circuit with a capacitor connected to an AC generator 
with AC source voltage given by   V (t) =V0 sin(ωt) . In the purely capacitive case, both 
resistance  R  and inductance  L  are zero. The circuit diagram is shown in Figure 12.2.5. 
 

 
 

Figure 12.2.5 A purely capacitive circuit 
 
We would like to find the current in the circuit, 
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   IC (t) = IC0 sin(ωt −φC ) . (12.2.22) 
  
Again, Kirchhoff’s loop rule yields 
 

 ( )( ) ( ) ( ) 0C
Q tV t V t V t
C

− = − = . (12.2.23) 

 
The charge on the capacitor is therefore  
 
   Q(t) = CV (t) = CVC (t) = CVC0 sin(ωt) , (12.2.24) 
 
where 0 0CV V= . The current is 
 

 

  

IC (t) = +
dQ
dt

=ωCVC0 cos(ωt) =ωCVC0 sin(ωt +π / 2)

= IC0 sin(ωt +π / 2),
, (12.2.25) 

 
where we have used the trigonometric identity   cosωt = sin(ωt +π / 2) . The maximum 
value of the current can be determined by comparing Eq. (12.2.25) to Eq. (12.2.22),  
 

 0
0 0

C
C C

C

VI CV
X

ω= = , (12.2.26) 

 
where the capacitance reactance,  XC , is  
 

 1
CX Cω
= . (12.2.27) 

 
The capacitive reactance also has SI units of ohms and represents the “effective 
resistance” for a purely capacitive circuit. Note that CX  is inversely proportional to both 
 C  and ω  , and diverges as ω  approaches zero. 
 
The phase constant can be determined by comparing Eq. (12.2.25) to Eq. (12.2.22), and is 
 

 
  
φC = −

π
2

. (12.2.28) 

 
The current and voltage plots and the corresponding phasor diagram are shown in the 
Figure 12.2.6 below.  
 



 
 

12-10 

(a) 

        
 

(b) 

 
Figure 12.2.6 (a) Time dependence of ( )CI t  and ( )CV t  across the capacitor. (b) Phasor 
diagram for the capacitive circuit. 
 
Notice that at 0t = , the voltage across the capacitor is zero while the current in the circuit 
is at a maximum. In fact, ( )CI t  reaches its maximum one quarter of a cycle earlier than 
( )CV t .  

 
 

The current leads the voltage by π/2 in a capacitive circuit 
 

 
The word “lead” means that the plot of   IC (t)  is shifted to the left of the plot of   VC (t)  in 
Figure 12.2.6 (a), whereas in the phasor diagram the phasor    


IC (t)  is “ahead” the phasor 

for    


VC (t)  as they rotate counterclockwise in Figure 12.2.6(b). 
 
12.3 The RLC Series Circuit 
 
Consider now the driven series  RLC  circuit with   V (t) =V0 sin(ωt + φ)  shown in Figure 
12.3.1. 

 
 

Figure 12.3.1 Driven series RLC Circuit 
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We would like to find the current in the circuit, 
 
   I(t) = I0 sin(ωt) . (12.3.1) 
 
Notice that we have added a phase constant φ  to our previous expressions for   V (t)  and 

  I(t)  when we were analyzing single element driven circuits. Applying Kirchhoff’s 
modified loop rule, we obtain  
 
   V (t) −VR (t) −VL(t) −VC (t) = 0 . (12.3.2) 
 
We can rewrite Eq. (12.3.2) using   VR (t) = IR ,   VL(t) = LdI / dt , and   VC (t) = Q / C  as  
 

 
  
L dI

dt
+ IR +

Q
C

=V0 sin(ωt + φ) . (12.3.3) 

 
Differentiate Eq. (12.3.3), using /I dQ dt= + , and divide through by  L , yields what is 
called a second order damped linear driven differential equation, 
 

 
  
d 2 I
dt2

+
R
L

dI
dt

+
I

LC
=
ωV0

L
cos(ωt + φ) . (12.3.4) 

 
We shall find the amplitude,   I0 , of the current, and phase constant φ  which is the phase 
shift between the voltage source and the current by examining the phasors associates with 
the three circuit elements  R ,  L  and  C .   
 
The instantaneous voltages across each of the three circuit elements  R ,  L , and  C  has a 
different amplitude and phase compared to the current, as can be seen from the phasor 
diagrams shown in Figure 12.3.2.    

 
(a) 

 
(b) 

 
(c) 

 
Figure 12.3.2 Phasor diagrams for the relationships between current and voltage in (a) 
the resistor, (b) the inductor, and (c) the capacitor, of a series  RLC  circuit. 
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Using the phasor representation, Eq. (12.3.2) can be written as 
 
 0 0 0 0R L CV V V V= + +

   
 (12.3.5) 

 
as shown in Figure 12.3.3(a). Again we see that current phasor 0I


 leads the capacitive 

voltage phasor 0CV


 by / 2π  but lags the inductive voltage phasor 0LV


 by / 2π . The three 
voltage phasors rotate counterclockwise as time increases, with their relative positions 
fixed. 
 

 
 

 
Figure 12.3.3 (a) Phasor diagram for the series RLC circuit. (b) voltage relationship 
 
The relationship between different voltage amplitudes is depicted in Figure 12.3.3(b). 
From Figure 12.3.3, we see that the amplitude satisfies 
 

 

   

V0 = |


V0 |= |


VR0 +


VL0 +


VC0 |= VR0
2 + (VL0 −VC0 )2

= (I0 X R )2 + (I0 X L − I0 XC )2

= I0 X R
2 + ( X L − XC )2 .

 (12.3.6) 

 
Therefore the amplitude of the current is 

 

  

I0 =
V0

X R
2 + ( X L − XC )2

. (12.3.7) 

 
Using Eqs. (12.2.5), (12.2.20), and (12.2.27) for the reactances, Eq. (12.3.7) becomes 
 

 

  

I0 =
V0

R2 + (ωL− 1
ωC

)2

, series RLC  circuit . (12.3.8) 

 
From Figure 12.3.3(b), we can determine that the phase constant satisfies 
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tanφ =

X L − XC

X R

⎛

⎝⎜
⎞

⎠⎟
=

1
R

ωL−
1

ωC
⎛
⎝⎜

⎞
⎠⎟

. (12.3.9) 

 
Therefore the phase constant is  
 

 
  
φ = tan−1 1

R
ωL−

1
ωC

⎛
⎝⎜

⎞
⎠⎟

, series RLC  circuit . (12.3.10) 

 
It is crucial to note that the maximum amplitude of the AC voltage source 0V  is not equal 
to the sum of the maximum voltage amplitudes across the three circuit elements:  
 
 0 0 0 0R L CV V V V≠ + +  (12.3.11) 
 
This is due to the fact that the voltages are not in phase with one another, and they reach 
their maxima at different times.  
 
 
12.3.1 Impedance  
 
We have already seen that the inductive reactance LX Lω= , and the capacitive reactance 

1/CX Cω=  play the role of an effective resistance in the purely inductive and capacitive 
circuits, respectively. In the series  RLC  circuit, the effective resistance is the impedance, 
defined as  
   Z = X R

2 + ( X L − XC )2  (12.3.12) 
 
The relationship between  Z ,  X R ,  X L , and  XC  can be represented by the diagram shown 
in Figure 12.3.4: X L − XC  

 
 

Figure 12.3.4 Vector representation of the relationship between  Z ,  X R , LX , and CX . 
 
The impedance also has SI units of ohms. In terms of  Z , the current (Eqs. (12.3.1) and 
(12.3.7)) may be rewritten as  
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I(t) =

V0

Z
sin(ωt)  (12.3.13) 

 
Notice that the impedance  Z  also depends on the angular frequency ω , as do LX and 

CX . 
 
Using Eq. (12.3.9) for the phase constant φ  and Eq. (12.3.12) for  Z , we may readily 
recover the limits for simple circuit (with only one element). A summary is provided in 
Table 12.1 below: 
 

Simple 
Circuit R  L  C  LX Lω=  1

CX Cω
=  

  
φ = tan−1 X L − XC

X R

⎛

⎝⎜
⎞

⎠⎟
   Z = X R

2 + ( X L − XC )2

 
purely 
resistive R  0 ∞  0 0 0  X R  
purely 
inductive 0 L  ∞  LX  0 / 2π  LX  
purely 
capacitive 0 0 C  0 CX  / 2π−  CX  

 
Table 12.1 Simple-circuit limits of the series RLC circuit 

  
12.3.2 Resonance  
 
In a driven  RLC  series circuit, the amplitude of the current (Eq. (12.3.8)) has a 
maximum value, a resonance, which occurs at the resonant angular frequency  ω0 . 
Because the amplitude   I0  of the current is inversely proportionate to  Z  (Eq. (12.3.13), 
the maximum of   I0  occurs when  Z  is minimum. This occurs at an angular frequency  ω0  
such that L CX X= ,  

 
  
ω0 L =

1
ω0C

. (12.3.14) 

 
Therefore, the resonant angular frequency is   
 

 0
1
LC

ω = . (12.3.15) 

 
At resonance, the impedance becomes  Z = R , and the amplitude of the current is 
 

 0
0
VI
R

= , (12.3.16) 

 
and the phase constant is zero, (Eq. (12.3.10)), 
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 0φ = . (12.3.17) 
 
A qualitative plot of the amplitude of the current as a function of driving angular 
frequency for two driven  RLC  circuits, with different values of resistance,   R2 > R1  is 
illustrated in Figure 12.3.5. The amplitude is larger for smaller a smaller value of 
resistance. 
 

 
 
Figure 12.3.5 The amplitude of the current as a function of ω  in the driven  RLC  circuit, 

for two different values of the resistance.  
 
 
12.4 Power in an AC circuit 

 
In the series RLC circuit, the instantaneous power delivered by the AC generator is given 
by 

 

  

P(t) = I(t)V (t) =
V0

Z
sin(ωt) ⋅V0 sin(ωt + φ) =

V0
2

Z
sin(ωt)sin(ωt + φ)

=
V0

2

Z
(sin2(ωt)cosφ + sin(ωt)cos(ωt)sinφ)

 (12.4.1) 

 
where we have used the trigonometric identity 
 
   sin(ωt + φ) = sin(ωt)cosφ + cos(ωt)sinφ . (12.4.2) 
 
The time average of the power is 
 

 
  

P(ω ) =
1
T

V0
2

Z
sin2(ωt)cosφ  dt

0

T

∫ +
1
T

V0
2

Z
sin(ωt)cos(ωt)sinφ  dt

0

T

∫ =
1
2

V0
2

Z
cosφ .(12.4.3) 
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where we have used the integral results in Eq. (12.2.9).  In terms of the rms quantities, 

  Vrms =V0 / 2  and   Irms =Vrms / Z , the time-averaged power can be written as 
 

 
  

P(ω ) =
1
2

V0
2

Z
cosφ =

Vrms
2

Z
cosφ = IrmsVrms cosφ  (12.4.4) 

 
The quantity cosφ  is called the power factor. From Figure 12.3.4, one can readily show 
that  

 cos
R
Z

φ = . (12.4.5) 

Thus, we may rewrite 
  

P(ω )  as 

 
  

P(ω ) = Irms
2 (ω )R , (12.4.6) 

where 

 

  

Irms (ω ) =
1
2

V0

R2 + (ωL − 1
ωC

)2

, (12.4.7) 

 
In Figure 12.4.1, we plot the time-averaged power as a function of the driving angular 
frequency ω  for two driven  RLC  circuits, with different values of resistance,   R2 > R1 . 
 

 
 
Figure 12.4.1 Average power as a function of frequency in a driven series  RLC  circuit. 

 
We see that 

  
P(ω )  attains the maximum value when cos 1φ = , or  Z = R , which is the 

resonance condition. At resonance, we have  
 

 
  

P(ω0 ) = IrmsVrms =
Vrms

2

R
. (12.4.8) 
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12.4.1 Width of the Peak 
 
The peak has a line width. One way to characterize the width is to define Δω ω ω+ −= − , 
where ω±  are the values of the driving angular frequency such that the power is equal to 
half its maximum power at resonance. This is called full width at half maximum, as 
illustrated in Figure 12.4.2. The width ωΔ  increases with resistance  R . 
 

 
 

Figure 12.4.2 Width of the peak 
 
To find ωΔ , it is instructive to first rewrite the average power 

  
P(ω )  as 

 

 
  

P(ω ) =
1
2

V0
2 R

R2 + (ωL −1 /ωC)2 =
1
2

V0
2 Rω 2

ω 2R2 + L2 (ω 2 −ω0
2 )2 , (12.4.9) 

 
with 

  
P(ω0 ) =V0

2 / 2R . The condition for finding ω±  is 
 

 
  

1
2

P((ω0 )) = P(ω± )  ⇒    
V0

2

4R
=

1
2

V0
2 Rω±

2

ω±
2 R2 + L2 (ω±

2 −ω0
2 )2 . (12.4.10) 

 
Eq. (12.4.10) reduces to 

 
2

2 2 2
0( ) R

L
ωω ω ⎛ ⎞− = ⎜ ⎟⎝ ⎠

. (12.4.11) 

 
Taking square roots yields two solutions, which we analyze separately. 
 
Case 1:  Taking the positive root leads to 
 

 2 2
0

R
L
ωω ω +

+ − = +  (12.4.12) 
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We can solve this quadratic equation, and the solution with positive root is 
 

 
  
ω + =

R
2L

+ R
2L

⎛
⎝⎜

⎞
⎠⎟

2

+ω0
2 . (12.4.13) 

 
Case 2: Taking the negative root of Eq. (12.4.12) yields 
 

 2 2
0

R
L
ωω ω −

− − = − . (12.4.14) 

 
The solution to this quadratic equation with positive root is 
 

 
  
ω− = − R

2L
+ R

2L
⎛
⎝⎜

⎞
⎠⎟

2

+ω0
2 . (12.4.15) 

 
The width at half maximum is then the difference 
 

 R
L

Δω ω ω+ −= − = . (12.4.16) 

 
Once the width ωΔ  is known, the quality factor   

Qqual  is defined as 
 

 
  
Qqual =

ω0

Δω
=
ω0 L

R
. (12.4.17) 

 
Comparing the above equation with Eq. (11.10.17), we see that both expressions agree 
with each other in the limit where the resistance is small, and 2 2

0 0( / 2 )R Lω ω ω′ = − ≈ . 
 
 
12.5 Transformer 
 
A transformer is a device used to increase or decrease the AC voltage in a circuit. A 
typical device consists of two coils of wire, a primary and a secondary, wound around an 
iron core, as illustrated in Figure 12.5.1. The primary coil, with 1N  turns, is connected to 
alternating voltage source 1( )V t . The secondary coil has   N2  turns and is connected to a 
load with resistance 2R . The way transformers operate is based on the principle that an 
alternating current in the primary coil will induce an alternating emf on the secondary 
coil due to their mutual inductance. 
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Figure 12.5.1 A transformer 
 
In the primary circuit, neglecting the small resistance in the coil, Faraday’s law of 
induction implies 

 1 1
BdV N

dt
Φ= − , (12.5.1) 

 
where BΦ  is the magnetic flux through one turn of the primary coil. The iron core, which 
extends from the primary to the secondary coils, serves to increase the magnetic field 
produced by the current in the primary coil and ensures that nearly all the magnetic flux 
through the primary coil also passes through each turn of the secondary coil. Thus, the 
voltage (or induced emf) across the secondary coil is 
 

 2 2
BdV N

dt
Φ= − . (12.5.2) 

 
In the case of an ideal transformer, power loss due to Joule heating can be ignored, so 
that the power supplied by the primary coil is completely transferred to the secondary coil, 
 
 1 1 2 2I V I V= . (12.5.3) 
 
In addition, no magnetic flux leaks out from the iron core, and the flux BΦ  through each 
turn is the same in both the primary and the secondary coils. Combining the two 
expressions, we are lead to the transformer equation, 
 

 2 2

1 1

V N
V N

= . (12.5.4) 

 
By combining the two equations above, the transformation of currents in the two coils 
may be obtained as 

 
  
I1 =

V2

V1

I2 =
N2

N1

I2 . (12.5.5) 
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Thus, we see that the ratio of the output voltage to the input voltage is determined by the 
turn ratio 2 1/N N . If 2 1N N> , then 2 1V V> , which means that the output voltage in the 
second coil is greater than the input voltage in the primary coil. A transformer with 

2 1N N>  is called a step-up transformer. On the other hand, if 2 1N N< , then 2 1V V< , and 
the output voltage is smaller than the input. A transformer with 2 1N N<  is called a step-
down transformer. 
 
  
12.6 Parallel RLC Circuit 

 
Consider the parallel  RLC  circuit illustrated in Figure 12.6.1. The AC voltage source is 

  V (t) =V0 sin(ωt) . 
 

 
 

Figure 12.6.1 Parallel  RLC  circuit. 
 
Unlike the series  RLC  circuit, the instantaneous voltages across all three circuit elements 
 R ,  L , and  C  are the same, and each voltage is in phase with the current through the 
resistor. However, the currents through each element will be different.  
 
In analyzing this circuit, we make use of the results discussed in Sections 12.2 – 12.4. 
The current in the resistor is  
 

 
  
IR (t) = V (t)

R
=

V0

R
sin(ωt) = IR0 sin(ωt) . (12.6.1) 

 
where 0 0 /RI V R= . The voltage across the inductor is  
 

 
  
VL(t) =V (t) =V0 sin(ωt) = L

dIL

dt
. (12.6.2) 

 
Integrating Eq. (12.6.2) yields 
 

  
IL(t) =

V0

L
sin(ωt ')dt '

0

t

∫ = −
V0

ωL
cos(ωt) =

V0

X L

sin(ωt − π / 2) = IL0 sin(ωt − π / 2) ,(12.6.3) 
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where 0 0 /L LI V X=  and LX Lω=  is the inductive reactance.  
 
Similarly, the voltage across the capacitor is   VC (t) =V0 sin(ωt) = Q(t) / C , which implies 
 

 
  
IC (t) = dQ

dt
=ωCV0 cos(ωt) =

V0

XC

sin(ωt + π / 2) = IC0 sin(ωt + π / 2) , (12.6.4) 

 
where 0 0 /C CI V X=  and 1/CX Cω=  is the capacitive reactance. 
 
Using Kirchhoff’s junction rule, the total current in the circuit is simply the sum of all 
three currents. 
 

 
  

I(t) = IR (t) + IL(t) + IC (t)
= IR0 sin(ωt) + IL0 sin(ωt − π / 2) + IC0 sin(ωt + π / 2).

 (12.6.5) 

 
The currents can be represented with the phasor diagram shown in Figure 12.6.2. 
 

 
 

Figure 12.6.2 Phasor diagram for the parallel RLC circuit 
 
From the phasor diagram, the phasors satisfy the vector addition condition, 
 
 0 0 0 0R L CI I I I= + +

   
. (12.6.6) 

 
The amplitude of the current, 0I , can be obtained as 
 

 

   

I0 =|

I0 |=|


IR0 +


IL0 +


IC0 |= IR0

2 + (IC0 − IL0 )2

=V0

1
R2 + ωC − 1

ωL
⎛
⎝⎜

⎞
⎠⎟

2

=V0

1
X R

2 + 1
XC

− 1
X L

⎛

⎝⎜
⎞

⎠⎟

2 . (12.6.7) 
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Therefore the amplitude of the current is 
 

 
  
I0 =V0

1
X R

2 + 1
XC

− 1
X L

⎛

⎝⎜
⎞

⎠⎟

2

, parallel RLC  circuit . (12.6.8) 

 
From the phasor diagram shown in Figure 12.6.2, we see that the tangent of the phase 
constant can be obtained as 
 

 

0 0

0 0

00

1 1 1tan C L C L

R C L

V V
I I X X R R CVI X X L

R

φ ω
ω

−
⎛ ⎞ ⎛ ⎞− ⎛ ⎞= = = − = −⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎝ ⎠⎝ ⎠ ⎝ ⎠

. (12.6.9) 

 
Therefore the phase constant is 

 
  
φ = tan−1 RωC −

R
ωL

⎛
⎝⎜

⎞
⎠⎟

, parallel RLC  circuit . (12.6.10) 

 
Because ( )RI t , ( )LI t  and ( )CI t  are not in phase with one another, 0I  is not equal to the 
sum of the amplitudes of the three currents, 
 
 0 0 0 0R L CI I I I≠ + + . (12.6.11) 
 
With 0 0 /I V Z= , the (inverse) impedance of the circuit is given by  
 

 
  

1
Z
= 1

R2 + ωC − 1
ωL

⎛
⎝⎜

⎞
⎠⎟

2

= 1
X R

2 + 1
XC

− 1
X L

⎛

⎝⎜
⎞

⎠⎟

2

 (12.6.12) 

 
The relationship between Z ,  X R , LX and CX  is shown in Figure 12.6.3. 
 

 
 

Figure 12.6.3 Relationship between Z ,  X R , LX and CX  in a parallel  RLC  circuit. 
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The resonance condition for the parallel RLC circuit is given by 0φ = , which implies 
 

 1 1

C LX X
= . (12.6.13) 

 
We can solve Eq. (12.6.13) for the resonant angular frequency and find that 
 

 
  
ω0 =

1
LC

. (12.6.14) 

 
as in the series RLC circuit. From Eq. (12.6.12), we readily see that 1/ Z  is minimum (or 
Z  is maximum) at resonance. The current in the inductor exactly cancels out the current 
in the capacitor, so that the current in the circuit reaches a minimum, and is equal to the 
current in the resistor, 

 0
0
VI
R

=  (12.6.15) 

 
As in the series  RLC  circuit, power is dissipated only through the resistor. The time-
averaged power is 

 
  

P(t) = IR (t)V (t) = IR
2 (t)R =

V0
2

R
sin2(ωt) =

V0
2

2R
=

V0
2

2Z
Z
R

. (12.6.16) 

 
Thus, the power factor in this case is  
 

 2 2
0

( ) 1
power factor cos

/ 2
1

P t Z
V Z R RR C

L

φ

ω
ω

= = = =
⎛ ⎞+ −⎜ ⎟⎝ ⎠

. (12.6.17) 
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12.7 Summary 
 

• In an AC circuit with a sinusoidal voltage source   V (t) =V0 sin(ωt) , the current is 
given by 0( ) sin( )I t I tω φ= − , where 0I  is the amplitude and φ  is the phase 
constant (phase difference between the voltage source and the current). For simple 
circuit with only one element (a resistor, a capacitor or an inductor) connected to 
the voltage source, the results are as follows: 

 
Circuit Elements Resistance 

/Reactance 
Current 

Amplitude  
Phase constant φ  

 
R 0

0R
VI
R

=  0 

 
LX Lω=  0

0L
L

VI
X

=  / 2π  
current lags voltage by 90°  

 
1

CX Cω
=  0

0C
C

VI
X

=  / 2π−  
current leads voltage by 90°  

  
where LX  is the inductive reactance and CX  is the capacitive reactance. 

  
• For circuits which have more than one circuit element connected in series, the 

results are 
  

Circuit Elements Impedance Z Current Amplitude Phase constant φ  

 
2 2

LR X+  
0

0 2 2
L

VI
R X

=
+

 0
2
πφ< <  

 
2 2

CR X+  
0

0 2 2
C

VI
R X

=
+

 0
2
π φ− < <  

 
2 2( )L CR X X+ −  0

0 2 2( )L C

VI
R X X

=
+ −

 0  if  
0  if  

L C

L C

X X
X X

φ
φ
> >
< <

 

 
where  Z  is the impedance  Z  of the circuit. For a series  RLC  circuit, we have 

 

 ( )22
L CZ R X X= + − .  

 
The phase constant (phase difference between the voltage and the current) in an 
AC circuit is  

 1tan L CX X
R

φ − −⎛ ⎞= ⎜ ⎟⎝ ⎠
.  
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• In the parallel  RLC  circuit, the impedance is given by 
 

 
22

2 2

1 1 1 1 1 1

C L

C
Z R L R X X

ω
ω

⎛ ⎞⎛ ⎞= + − = + −⎜ ⎟⎜ ⎟⎝ ⎠ ⎝ ⎠
, 

  
 and the phase constant is  
 

 1 11 1 1tan tan
C L

R R C
X X L

φ ω
ω

− −⎡ ⎤⎛ ⎞ ⎡ ⎤⎛ ⎞= − = −⎢ ⎥⎜ ⎟ ⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦⎝ ⎠⎣ ⎦
. 

 
• The rms (root mean square) voltage and current in an AC circuit are given by 

 
0 0

rms rms,         
2 2
V IV I= = . 

 
• The average power of an AC circuit is  
 

 rms rms( ) cosP t I V φ= ,  
 
 where cosφ  is known as the power factor.  
 

• The resonant angular frequency 0ω  is 
 

 0
1
LC

ω = .  

 
At resonance, the current in the series  RLC  circuit reaches the maximum, but the 
current in the parallel  RLC  circuit is at a minimum.  

 
• The transformer equation is  

 

 2 2

1 1

V N
V N

= ,  

 
where 1V  is the voltage source in the primary coil with 1N  turns, and 2V  is the 
output voltage in the secondary coil with 2N  turns. A transformer with 2 1N N>  is 
called a step-up transformer, and a transformer with 2 1N N<  is called a step-down 
transformer. 
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12.8 Problem-Solving Tips 
 
In this chapter, we have seen how phasors provide a powerful tool for analyzing the AC 
circuits.  Below are some important tips: 
 
1. Keep in mind the phase relationships for simple circuits 
 
 (1) For a resistor, the voltage and the phase are always in phase. 
 (2) For an inductor, the current lags the voltage by 90° . 
 (3) For a capacitor, the current leads the voltage by 90° . 
 
2. When circuit elements are connected in series, the instantaneous current is the same for 

all elements, and the instantaneous voltages across the elements are out of phase. On 
the other hand, when circuit elements are connected in parallel, the instantaneous 
voltage is the same for all elements, and the instantaneous currents across the elements 
are out of phase.  

 
3. For series connection, draw a phasor diagram for the voltages. The amplitudes of the 

voltage drop across all the circuit elements involved should be represented with 
phasors. In Figure 12.8.1 the phasor diagram for a series  RLC  circuit is shown for 
both the inductive case L CX X>  and the capacitive case L CX X< .  

 

    (a)                             (b) 
 
Figure 12.8.1 Phasor diagram for the series  RLC  circuit for (a) L CX X> and (b) 

L CX X< . 
 

From Figure 12.8.1(a), we see that 0 0L CV V>  in the inductive case and 0V


 leads 0I


 by a 

phase constant φ . For the capacitive case shown in Figure 12.8.1(b), 0 0C LV V>  and 0I


 

leads 0V


 by a phase constant φ .  
 



 
 

12-27 

4. When 0 0L CV V= , or 0φ = , the circuit is at resonance. The corresponding resonant 

angular frequency is 0 1/ LCω = , and the power delivered to the resistor is a 
maximum.  

 
5.  For parallel connection, draw a phasor diagram for the currents. The amplitudes of the 

currents across all the circuit elements involved should be represented with phasors. In 
Figure 12.8.2 the phasor diagram for a parallel  RLC  circuit is shown for both the 
inductive case L CX X>  and the capacitive case L CX X< .  

 

               (a)                  (b) 
 
Figure 12.8.2 Phasor diagram for the parallel  RLC  circuit for (a) L CX X>  and (b) 

L CX X< . 
 

From Figure 12.8.2(a), we see that 0 0L CI I>  in the inductive case and 0V


 leads 0I


 by a 

phase constant φ . For the capacitive case shown in Figure 12.8.2(b), 0 0C LI I>  and 0I


 

leads 0V


 by a phase constant φ .  
 
 
12.9 Solved Problems 
 
12.9.1 RLC Series Circuit 
 
A series  RLC  circuit with 160 mHL = , C = 100 Fµ , and 40.0R = Ω  is connected to a 
sinusoidal voltage   V (t) = (40.0V)sin(ωt) , with 200 rad/sω = . 
 
(a) What is the impedance of the circuit? 
 
(b) Let the current at any instant in the circuit be  I(t) = I0 sin(ωt −φ) . Find I0. 
 
(c) What is the phase constant φ ? 
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Solution: 
 
(a) The impedance of a series RLC circuit is given by 
 

 ( )22
L CZ R X X= + − , (12.9.1) 

 
where LX Lω=  and   XC = 1 /ωC  are the inductive and capacitive reactances, 
respectively. The voltage source is 0( ) sin( )V t V tω= , where V0 is the maximum output 
voltage and ω  is the angular frequency, with 0 40 VV = and 200 rad/sω = . Thus, the 
impedance  Z  is 
 

  

  

Z = (40.0 Ω)2 + (200 rad/s)(0.160 H) −
1

(200 rad/s)(100 ×10−6  F)
⎛
⎝⎜

⎞
⎠⎟

2

= 43.9Ω.

 (12.9.2) 

   
(b) With 0 40.0VV = , the amplitude of the current is given by  
 

 0
0

40.0V 0.911A
43.9

VI
Z

= = =
Ω

. (12.9.3) 

 
(c) The phase constant (the phase difference between the voltage source and the current) 
is given by 
 

 

  

φ = tan−1 X L − XC

R
⎛

⎝⎜
⎞

⎠⎟
= tan−1

ωL − 1
ωC

R

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

= tan−1

(200 rad/s)(0.160 H) − 1
(200 rad/s)(100 ×10−6  F)

40.0 Ω

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

= −24.2°.

 (12.9.4) 

 
12.9.2 RLC Series Circuit 
 
Suppose an AC generator with   V (t) = (150V)sin(100t)  is connected to a series  RLC  
circuit with 40.0 R = Ω , 80.0 mHL = , and 50.0 FC µ= , as shown in Figure 12.9.1. 
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Figure 12.9.1 RLC series circuit 
 
(a) Calculate 0RV , 0LV  and 0CV , the maximum values of the voltage drop across each 
circuit element. 
 
(b) Calculate the maximum potential difference across the inductor and the capacitor 
between points  b  and  d  shown in Figure 12.9.1. 
 
Solutions: 
 
(a) The inductive reactance, capacitive reactance and the impedance of the circuit are 
given by 

 
  
XC =

1
ωC

=
1

(100 rad/s)(50.0 ×10−6  F)
= 200 Ω , (12.9.5) 

 
   X L =ωL = (100 rad/s)(80.0 ×10−3  H) = 8.00 Ω . (12.9.6) 
 
The impedance is 
 

   Z = R2 + ( X L − XC )2 = (40.0 Ω)2 + (8.00 Ω− 200 Ω)2 = 196 Ω . (12.9.7) 
 
The corresponding maximum current amplitude is  
 

 0
0

150 V 0.765A
196 

VI
Z

= = =
Ω

. (12.9.8) 

 
The maximum voltage across the resistance is the product of maximum current and the 
resistance, 
 
   VR0 = I0 R = (0.765 A)(40.0 Ω) = 30.6V . (12.9.9) 
 
Similarly, the maximum voltage across the inductor is 
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   VL0 = I0 X L = (0.765 A)(8.00 Ω) = 6.12 V . (12.9.10) 
 
The maximum voltage across the capacitor is 
  
   VC0 = I0 XC = (0.765 A)(200 Ω) = 153 V . (12.9.11) 
 
Note that the maximum input voltage   V0  is related to 0RV , 0LV  and 0CV  by 
 
 2 2

0 0 0 0( )R L CV V V V= + − . (12.9.12) 
 
 (b) From  b  to  d , the maximum voltage would be the difference between 0LV  and 0CV , 
 
 0 0 0 0| | | | | | | 6.12 V 153 V| 147 Vbd L C L CV V V V V= + = − = − =

 
. (12.9.13) 

 
 
12.9.3  Resonance 
 
A sinusoidal voltage   V (t) = (200V)sin(ωt)  is applied to a series  RLC  circuit with 

10.0 mHL = , 100 nFC = , and R = 20.0 Ω . Find the following quantities:  
 
(a) the resonant frequency,  
 
(b) the amplitude of the current at resonance, 
 
(c) the quality factor   

Qqual  of the circuit, and 
 
(d) the amplitude of the voltage across the inductor at the resonant frequency. 
 
 
Solution: 
 
(a) The resonant frequency for the circuit is given by 
 

 
  
f =

ω0

2π
=

1
2π

1
LC

=
1

2π
1

(10.0 ×10−3  H)(100 ×10−9  F)
= 5033Hz . (12.9.14) 

  
(b) At resonance, the current is 
 

 0
0

200 V 10.0A
20.0 

VI
R

= = =
Ω

. (12.9.15) 
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(c) The quality factor   
Qqual  of the circuit is given by 

 

 
  
Qqual =

ω0 L
R

=
2π (5033 s−1)(10.0 ×10−3  H)

(20.0 Ω)
= 15.8 . (12.9.16) 

 
(d) At resonance, the amplitude of the voltage across the inductor is 
 
   VL0 = I0 X L = I0ω0 L = (10.0 A)2π (5033 s−1)(10.0 ×10−3  H) = 3.16×103 V . (12.9.17) 
 
 
12.9.4  RL High-Pass Filter 
 
A  RL  high-pass filter (circuit that filters out low-frequency AC currents) can be 
represented by the circuit in Figure 12.9.2, where  R  is the internal resistance of the 
inductor. 

 
 

Figure 12.9.2  RL  filter 
 
(a) Find 20 10/V V , the ratio of the maximum output voltage 20V  to the maximum input 
voltage 10V . 
 
(b) Suppose 15.0 r = Ω , 10R = Ω , and 250 mHL = . Find the frequency at which 

20 10/ 1/ 2V V = . 
 
Solution: 
 
(a) The impedance for the input circuit is 2 2

1 ( ) LZ R r X= + +  where LX Lω= . The 

impedance for the output circuit is 2 2
2 LZ R X= + . The maximum current is given by 

 

 10 0
0 2 2

1 ( ) L

V VI
Z R r X

= =
+ +

. (12.9.18) 

 
Similarly, the maximum output voltage is related to the output impedance by  
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 2 2

20 0 2 0 LV I Z I R X= = + . (12.9.19) 
This implies 

 
2 2

20
2 2

10 ( )
L

L

R XV
V R r X

+
=

+ +
. (12.9.20) 

 
(b) For 20 10/ 1/ 2V V = , we have  
 

 
2 2 2 2

2 2

1 ( ) 4    
( ) 4 3

L
L

L

R X R r RX
R r X

+ + −= ⇒ =
+ +

. (12.9.21) 

 
Because 2LX L fLω π= = , the frequency that yields this ratio is 
 

 
  
f =

X L

2πL
=

1
2π (0.250 H)

(10.0 Ω +15.0 Ω)2 − 4(10.0 Ω)2

3
= 5.51Hz . (12.9.22) 

 
 
12.9.5 RLC Circuit 

 
 

Figure 12.9.3 
 
Consider the circuit shown in Figure 12.9.3. The sinusoidal voltage source is 

  V (t) =V0 sin(ωt) . If both switches 1S  and 2S  are closed initially, find the following 
quantities, ignoring the transient effect and assuming that R , L , 0V , and ω  are known. 
                   
(a) The current ( )I t as a function of time. 
 
(b) The average power delivered to the circuit. 
 
(c) The current as a function of time a long time after only 1S  is opened. 
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(d) The capacitance  C  if both 1S  and 2S  are opened for a long time, with the current and 
voltage in phase. 

 
(e) The impedance of the circuit when both 1S  and 2S  are opened. 
 
(f) The maximum energy stored in the capacitor during oscillations. 
 
(g) The maximum energy stored in the inductor during oscillations. 
 
(h) The phase difference between the current and the voltage if the frequency of ( )V t  is 
doubled. 
 
(i) The frequency at which the inductive reactance LX  is equal to half the capacitive 
reactance CX . 
 
Solutions: 
 
(a) When both switches 1S  and 2S  are closed, the current only goes through the generator 
and the resistor, so the total impedance of the circuit is  R  and the current is  
 

 
  
IR (t) =

V0

R
sin(ωt) . (12.9.23) 

(b) The average power is given by 
 

 
  

P(t) = IR (t)V (t) =
V0

2

R
sin2(ωt) =

V0
2

2R
. (12.9.24) 

 
(c) If only 1S  is opened, after a long time the current will pass through the generator, the 
resistor and the inductor. For this  RL  circuit, the impedance becomes 
 

 
2 2 2 2 2

1 1

L

Z
R X R Lω

= =
+ +

, (12.9.25) 

 
and the phase constant φ  is  

 1tan L
R
ωφ − ⎛ ⎞= ⎜ ⎟⎝ ⎠

. (12.9.26) 

 
Thus, the current as a function of time is  
 

 
  
I(t) = I0 sin(ωt −φ) =

V0

R2 +ω 2 L2
sin[ωt − tan−1(ωL / R)] . (12.9.27) 
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Note that in the limit of vanishing resistance 0R = , / 2φ π= , and we recover the 
expected result for a purely inductive circuit. 
 
(d) If both switches are opened, then this would be a driven  RLC  circuit, with the phase 
constant φ  given by 

 

  

φ = tan−1 X L − XC

R
⎛

⎝⎜
⎞

⎠⎟
= tan−1

ωL − 1
ωC

R

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

. (12.9.28) 

 
If the current and the voltage are in phase, then 0φ = , implying tan 0φ = . Let the 
corresponding angular frequency be 0ω ; we then obtain 
 

 0
0

1L
C

ω
ω

= . (12.9.29) 

Therefore the capacitance is  

 2
0

1C
Lω

= . (12.9.30) 

 
(e) From (d), when both switches are opened, the circuit is at resonance with L CX X= . 
Thus, the impedance of the circuit becomes 
 
 2 2( )L CZ R X X R= + − = . (12.9.31) 
 
(f) The electric energy stored in the capacitor is  
 

 2 21 1 ( )
2 2E C CU CV C IX= = . (12.9.32) 

 
It attains maximum when the current is at its maximum 0I , 
 

 
2 2

2 2 0 0
,max 0 2 2 2

0

1 1 1
2 2 2C C

V V LU CI X C
R C Rω

⎛ ⎞= = =⎜ ⎟⎝ ⎠
, (12.9.33) 

 
where we have used 2

0 1/ LCω = . 
 
(g) The maximum energy stored in the inductor is given by 
 

 
2

2 0
,max 0 2

1
2 2L

LVU LI
R

= = . (12.9.34) 
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(h) If the frequency of the voltage source is doubled, i.e., 02 1/ LCω ω= = , then the 
phase constant becomes 
 

  
φ = tan−1 ωL −1 /ωC

R
⎛
⎝⎜

⎞
⎠⎟
= tan−1 (2 / LC )L − ( LC / 2C)

R

⎛

⎝
⎜

⎞

⎠
⎟ = tan−1 3

2R
L
C

⎛

⎝
⎜

⎞

⎠
⎟ . (12.9.35) 

 
(i) If the inductive reactance is one-half the capacitive reactance,  
 

 
  
X L =

1
2

XC     ⇒    ωL =
1
2

1
ωC

. (12.9.36) 

 
This occurs when eh angular frequency is 
 

 01
2 2LC

ωω = = . (12.9.37) 

 
12.9.6 RL Filter 
 
The circuit shown in Figure 12.9.4 represents a  RL  filter.  
 

 
 

Figure 12.9.4 
 
Let the inductance be L = 400 mH, and the input voltage   Vin = (20.0 V)sin(ωt) , where 

200 rad/sω = . 
 
(a) What is the value of  R  such that the output voltage lags behind the input voltage by 
30.0° ?  
  
(b) Find the ratio of the amplitude of the output and the input voltages. What type of filter 
is this circuit, high-pass or low-pass? 
 
(c) If the positions of the resistor and the inductor were switched, would the circuit be a 
high-pass or a low-pass filter?  
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Solutions: 
 
(a) Because the output voltage   Vout  is measured across the resistor, it is in phase with the 

current. Therefore the phase difference φ  between   Vout  and   Vin  is equal to the phase 
constant and satisfies 

 
  
tanφ =

VL

VR

=
IX L

IX R

=
ωL
R

. (12.9.38) 

Thus, we have 

 
  
R =

ωL
tanφ

=
(200rad/s)(0.400H)

tan30.0°
= 139Ω . (12.9.39) 

 
(b) The ratio is given by 
 

 out

2 2
in in

cos cos30.0 0.866.R

L

V V R
V V R X

φ= = = = ° =
+

 (12.9.40) 

 
The circuit is a low-pass filter, since the ratio out in/V V decreases with increasing ω .  
 
(c) In this case, the circuit diagram is 
 

 
 

Figure 12.9.5  RL  high-pass filter 
 
The ratio of the output voltage to the input voltage would be 
 

1/ 222 2
out

2 2 2 2 2
in in

1L L

L

V V X L R
V V LR X R L

ω
ωω

−
⎡ ⎤⎛ ⎞= = = = +⎢ ⎥⎜ ⎟⎝ ⎠+ + ⎢ ⎥⎣ ⎦

. 

 
The circuit is a high-pass filter, since the ratio out in/V V approaches one in the limit as 

  ω >> R / L .  
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12.10 Conceptual Questions 
 

1. Consider a purely capacitive circuit (a capacitor connected to an AC source). 
 

(a) How does the capacitive reactance change if the driving frequency is doubled? 
halved? 

 
(b) Are there any times when the capacitor is supplying power to the AC source? 

 
2. If the applied voltage leads the current in a series  RLC  circuit, is the frequency 

above or below resonance? 
 
3. Consider the phasor diagram shown in Figure 12.10.1 for a series  RLC  circuit. 

 
 

 
Figure 12.10.1 

 
(a) Is the driving frequency above or below the resonant frequency? 

 
(b) Draw the phasor 0V


 associated with the amplitude of the applied voltage. 

 
(c) Give an estimate of the phase constant φ  between the applied AC voltage and the 

current. 
 

4. How does the power factor in a  RLC  circuit change with resistance  R , 
inductance  L , and capacitance  C ?  

 
5. Can a battery be used as the primary voltage source in a transformer?  

 
6. If the power factor in a  RLC  circuit is cos 1/ 2φ = , can you tell whether the 

current leading or lagging the voltage? Explain. 
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12.11 Additional Problems 

 
12.11.1 Reactance of a Capacitor and an Inductor  
 
(a) A 0.5 FC µ= −  capacitor is connected, as shown in Figure 12.11.1(a), to an AC 
generator   V (t) =V0 sin(ωt)  with 0 300 VV = .  What is the amplitude 0I  of the resulting 
alternating current if the angular frequency ω  is (i) 100 rad/s, and (ii) 1000 rad/s? 
 

 
(a) 

 
(b) 

 
Figure 12.11.1 (a) A purely capacitive circuit, and (b) a purely inductive circuit. 

 
(b) A 45-mH inductor is connected, as shown in Figure 12.10.1(b), to an AC generator 

  V (t) =V0 sin(ωt)  with 0 300 VV = . The inductor has a reactance 1300 LX = Ω .  
 
(i) What is the applied angular frequency ω  and, (ii) the applied frequency f , in order 
that 1300 LX = Ω ?   
 
(iii) What is the amplitude 0I  of the resulting alternating current?   
 
(c) At what frequency f  would our 0.5-µF capacitor and our 45-mH inductor have the 
same reactance? What would this reactance be?  How would this frequency compare to 
the natural resonant frequency of free oscillations if the components were connected as 
an  LC  oscillator with zero resistance?   
 
 
12.11.2 Driven RLC Circuit Near Resonance 
 
The circuit shown in Figure 12.11.2 contains an inductor  L , a capacitor  C , and a resistor 
 R  in series with an AC generator, which provides a source of sinusoidally varying emf 

  V (t) =V0 sin(ωt) . This emf drives current 0( ) sin( )I t I tω φ= −  through the circuit at 
angular frequency ω .  
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Figure 12.11.2 
 
(a) At what angular frequency ω  will the circuit resonate with maximum response, as 
measured by the amplitude 0I  of the current in the circuit?  What is the value of the 
maximum current amplitude maxI ?  
 
(b) What is the value of the phase constant φ  (the phase difference between ( )V t  and 
( )I t ) at this resonant angular frequency? 

 
(c) Suppose the angular frequency ω  is increased from the resonance value until the 
amplitude 0I  of the current decreases from maxI  to max / 2I . What is new value of the 
phase difference φ  between the emf and the current?  Does the current lead or lag the 
emf?  
 
 
12.11.3 RC Circuit 
 
A series  RC  circuit with 34.0 10R = × Ω  and 0.40 FC µ=  is connected to an AC voltage 
source   V (t) = (100 V)sin(ωt) , with 200 rad/sω = . 
 
(a) What is the rms current in the circuit? 
 
(b) What is the phase difference between the voltage and the current? 
 
(c) Find the power dissipated in the circuit. 
 
(d) Find the voltage drop both across the resistor and the capacitor. 
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12.11.4 Black Box 
 
An AC voltage source is connected to a “black box” which contains a circuit, as shown in 
Figure 12.11.3.  

 
 

Figure 12.11.3 A “black box” connected to an AC voltage source. 
 
The elements in the circuit and their arrangement, however, are unknown. Measurements 
outside the black box provide the following information:   V (t) = (80 V)sin(ωt) , and 

  I(t) = (1.6 A)sin(ωt + 45°) . 
 
(a) Does the current lead or lag the voltage? 
 
(b) Is the circuit in the black box largely capacitive or inductive? 
 
(c) Is the circuit in the black box at resonance? 
 
(d) What is the power factor? 
 
(e) Does the box contain a resistor? A capacitor? An inductor? 
 
(f) Compute the average power delivered to the black box by the AC source. 
 
 
12.11.5 Parallel RL Circuit 
 
Consider the parallel  RL  circuit shown in Figure 12.11.4. 
 

 
 

Figure 12.11.4 Parallel  RL  circuit 
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The AC voltage source is   V (t) =V0 sin(ωt) . 
 
(a) Find the current across the resistor. 
 
(b) Find the current across the inductor. 
 
(c) What is the magnitude of the total current? 
 
(d) Find the impedance of the circuit. 
 
(e) What is the phase difference between the current and the voltage? 
 
 
12.11.6 Parallel RC Circuit 
 
Consider the parallel  RC  circuit shown in Figure 12.11.5. 
 

 
 

Figure 12.11.5 Parallel  RC  circuit 
 

The AC voltage source is   V (t) =V0 sin(ωt) . 
 
(a) Find the current across the resistor. 
 
(b) Find the current across the capacitor. 
 
(c) What is the magnitude of the total current? 
 
(d) Find the impedance of the circuit. 
 
(e) What is the phase difference between the current and the voltage? 
 
 
12.11.7 Power Dissipation 
 
A series  RLC  circuit with 10.0 R = Ω , 400 mHL = , and 2.0 FC µ=  is connected to an 
AC voltage source   V (t) =V0 sin(ωt)  that has amplitude 0 100 VV = .  
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(a) What is the resonant angular frequency 0ω ?  
 
(b) Find the rms current at resonance. 
 
(c) Let the driving angular frequency be 4000 rad/sω = . Compute CX , LX , Z , and φ . 
 
 
12.11.8  FM Antenna 
 
An FM antenna circuit (shown in Figure 12.11.6) has an inductance 610  HL −= , a 
capacitance 1210  FC −= , and a resistance 100R = Ω . A radio signal induces a 
sinusoidally alternating emf in the antenna with amplitude 510  V− .   
 

 
Figure 12.11.6 

 
(a) For what angular frequency 0ω  (radians/sec) of the incoming waves will the circuit 
be “in tune”-- that is, for what 0ω  will the current in the circuit be a maximum.   
 
(b) What is the quality factor   

Qqual  of the resonance? 
 
(c) Assuming that the incoming wave is “in tune,” what will be the amplitude of the 
current in the circuit at this “in tune” angular frequency.   
 
(d)  What is the amplitude of the potential difference across the capacitor at this “in 
tune” angular frequency? 
 
 
12.11.9 Driven RLC Circuit 
 
Suppose you want a series RLC  circuit to tune to your favorite FM radio station that 
broadcasts at a frequency of 89.7MHz . You would like to avoid the station that 
broadcasts at 89.5MHz . In order to achieve this, for a given input voltage signal from 
your antenna, you want the width of your resonance to be narrow enough at 89.7MHz  
such that the current flowing in your circuit will be 210− times less at 89.5MHz  than at 
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89.7MHz . You cannot avoid having a resistance of Ω= 1.0R , and practical 
considerations also dictate that you use the minimum L  possible.  
 
(a) In terms of your circuit parameters, L , R  and C , what is the amplitude of your 
current in your circuit as a function of the angular frequency of the input signal? 
 
(b) What is the angular frequency of the input signal at the desired resonance?  
 
(c) What values of L  and Cmust you use? 
 
(d) What is the quality factor for this resonance? 
 
(e) Show that at resonance, the ratio of the amplitude of the voltage across the inductor 
with the driving signal amplitude is the quality of the resonance. 
 
(f) Show that at resonance the ratio of the amplitude of the voltage across the capacitor 
with the driving signal amplitude is the quality of the resonance. 

 
(g) What is the time-averaged power at resonance that the signal delivers to the circuit? 

 
(h) What is the phase constant for the input signal at 89.5MHz ? 
 
(i) What is the time-averaged power for the input signal at 89.5MHz ? 
 
(j) Is the circuit capacitive or inductive at 89.5MHz ? 
 




