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Driven RLC Circuits

12.1 AC Sources

In Chapter 10 we learned that changing magnetic flux could induce an emf according to
Faraday’s law of induction. In particular, if a coil rotates in the presence of a magnetic
field, the induced emf varies sinusoidally with time and leads to an alternating current
(AC), and provides a source of AC power. The symbol for an AC voltage source is

An example of an AC source is
V(t)=V,sin(wt), (12.1.1)

where the maximum value V is called the amplitude. The voltage varies between ¥, and
-V, since a sine function varies between +1 and —1. A graph of voltage as a function of

time is shown in Figure 12.1.1. The phase of the voltage source is ¢, = wt, (the phase
constant is zero in Eq. (12.1.1)).

Figure 12.1.1 Sinusoidal voltage source

The sine function is periodic in time. This means that the value of the voltage at time ¢
will be exactly the same at a later time ¢"=¢+T where T is the period. The frequency,
f, defined as f =1/T, has the unit of inverse seconds (s ), or hertz (Hz ). The angular
frequency is defined tobe w =2z 1.

When a voltage source is connected to a RLC circuit, energy is provided to compensate
the energy dissipation in the resistor, and the oscillation will no longer damp out. The
oscillations of charge, current and potential difference are called driven or forced
oscillations.

After an initial “transient time,” an AC current will flow in the circuit as a response to the
driving voltage source. The current in the circuit is also sinusoidal,
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1(t) =1, sin(wrt — ), (12.1.2)

and will oscillate with the same angular frequency w as the voltage source, has
amplitude /,, phase ¢, =wt—¢, and phase constant ¢ that depends on the driving

angular frequency. Note that the phase constant is equal to the phase difference between
the voltage source and the current

Ap=¢, -0, =t — (Wt —9)=¢. (12.1.3)

12.2 AC Circuits with a Source and One Circuit Element

Before examining the driven RLC circuit, let’s first consider cases where only one circuit
element (a resistor, an inductor or a capacitor) is connected to a sinusoidal voltage source.

12.2.1 Purely Resistive Load

Consider a purely resistive circuit with a resistor connected to an AC generator with AC
source voltage given by V' (¢) =V, sin(wt), as shown in Figure 12.2.1. (As we shall see, a

purely resistive circuit corresponds to infinite capacitance C = oo and zero inductance
L=0.))

Figure 12.2.1 A purely resistive circuit

We would like to find the current through the resistor,
I.(t)=1,sin(wt—¢,). (12.2.1)
Applying Kirchhoff’s loop rule yields

V)—1,()R=0, (12.2.2)

where V, (1)=1,(1)R is the instantaneous voltage drop across the resistor. The
instantaneous current in the resistor is given by
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V(t) V,sin(wr)
R R

1.()= =1, sin(or).

Comparing Eq. (12.2.3) with Eq. (12.2.1), we find that the amplitude is

A
RO R _X
R
where V, =V, , and
X =R

(12.2.3)

(12.2.4)

(12.2.5)

The quantity X, is called the resistive reactance, to be consistent with nomenclature that

will introduce shortly for capacitive and inductive elements, but it is just the resistance.
The key point to recognize is that the amplitude of the current is independent of the

driving angular frequency. Because ¢, =0, [,(¢) and V,(¢) are in phase with each

other, i.e. they reach their maximum or minimum values at the same time, the phase

constant is zero,
¢, =0.

(12.2.6)

The time dependence of the current and the voltage across the resistor is depicted in

Figure 12.2.2(a).

@) (b)

Figure 12.2.2 (a) Time dependence of /,(¢) and V,(¢) across the resistor. (b) Phasor

diagram for the resistive circuit.

The behavior of /,(¢) and V,(¢) can also be represented with a phasor diagram, as

shown in Figure 12.2.2(b). A phasor is a rotating vector having the following properties;

(1) length: the length corresponds to the amplitude.

(i1) angular speed: the vector rotates counterclockwise with an angular speed w.
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(ii1) projection: the projection of the vector along the vertical axis corresponds to the
value of the alternating quantity at time ¢.

We shall denote a phasor with an arrow above it. The phasor V,, has a constant
magnitude of V,,. Its projection along the vertical direction is V, sin(w?), which is

equal to V,(¢), the voltage drop across the resistor at time #. A similar interpretation

applies to 1 zo for the current passing through the resistor. From the phasor diagram, we
readily see that both the current and the voltage are in phase with each other.

The average value of current over one period can be obtained as:
(1,0)= j 1 (t)dt = j 1, sin(r) d = ifsm 2T ) =0, (12.2.7)
T T
This average vanishes because
. 17, B
(sin(wr)) = = jo sin(owt) dt =0. (12.2.8)

Similarly, one may find the following relations useful when averaging over one period,

<c0s(a)t)> = %Jj cos(wt) dt =
<sm(a)t) cos(cot)) %_[OT sin(wt)cos(wt) dt =
; ’ (12.2.9)
(sin*(01)) = %jﬂ sin®(wr) dt = % [|/sin? ( Z;f t} dt = %
> 1
T

<cosz(cot) = _[Tcosz(a)t) dt = %JOTC (2;1} dt —%

From the above, we see that the average of the square of the current is non-vanishing:
()= j ()t = —j 12, sin® ot dt = 12, - ~[sin? 27 =L (122.10)
RO T 0 T 2 RO *
It is convenient to define the root-mean-square (rms) current as

I = (1 (r) T (12.2.11)
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In a similar manner, the rms voltage can be defined as

AEN{AG) =% . (12.2.12)

The rms voltage supplied to the domestic wall outlets in the United States is
V. =120 Vata frequency f = 60 Hz.

rms

The power dissipated in the resistor is
P.t)=1,)V,(t)=1;(t)R . (12.2.13)
The average power over one period is then

1 &
(PR(z)):<1;(r)R>:51,§OR:12 R= L Vo =2

(12.2.14)

rms rms’ rms

12.2.2 Purely Inductive Load

Consider now a purely inductive circuit with an inductor connected to an AC generator
with AC source voltage given by V(¢) =V, sin(wt), as shown in Figure 12.2.3. As we

shall see below, a purely inductive circuit corresponds to infinite capacitance C = and
zero resistance R=0.

Figure 12.2.3 A purely inductive circuit
We would like to find the current in the circuit,
I, (t)=1,,sin(wt—¢,). (12.2.15)
Applying the modified Kirchhoff’s rule for inductors, the circuit equation yields

V(t)—VL(t):V(t)—L%zo. (12.2.16)
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where we define V, (1) = Ldl, / dt. Rearranging yields

dl V
dt L L

where V,, =V, . Integrating Eq. (12.2.17), we find the current is

1.(t)= J.dl = Q sin(wt) dt = —Qcos(a)t) = Qsin(a)t —-1m/2)
L L oL oL , (12.2.18)

=1,,sin(wt—1/2).

where we have used the trigonometric identity —cos(w?)=sin(wt—m/2). Comparing Eq.
(12.2.18) with Eq. (12.2.15), we find that the amplitude is

] :—Ozﬂ’ (12.2.19)

where the inductive reactance, X, is given by
X,=oL. (12.2.20)

The inductive reactance has SI units of ohms (), just like resistance. However, unlike
resistance, X, depends linearly on the angular frequency @ . Thus, the inductance

reactance to current flow increases with frequency. This is due to the fact that at higher
frequencies the current changes more rapidly than it does at lower frequencies. On the
other hand, the inductive reactance vanishes as @ approaches zero.

The phase constant, ¢,, can also be determined by comparing Eq. (12.2.18) to Eq.
(12.2.15), and is given by

0, =+=. (12.2.21)

The current and voltage plots and the corresponding phasor diagram are shown in Figure
12.2.4.

12-7



(a) (b)

Figure 12.2.4 (a) Time dependence of /,(¢) and V, (¢) across the inductor. (b) Phasor
diagram for the inductive circuit.

As can be seen from the figures, the current /,(¢) is out of phase with V,(¢) by

¢, = m /2 it reaches its maximum value one quarter of a cycle later than V, (7).

The current lags voltage by ot / 2 in a purely inductive circuit

The word “lag” means that the plot of 7, (¢) is shifted to the right of the plot of V, (¢) in
Figure 12.2.4 (a), whereas in the phasor diagram the phasor I ,(2) 1s “behind” the phasor
for VL () as they rotate counterclockwise in Figure 12.2.4(b).

12.2.3 Purely Capacitive Load

Consider now a purely capacitive circuit with a capacitor connected to an AC generator
with AC source voltage given by V(¢) =V sin(w?). In the purely capacitive case, both
resistance R and inductance L are zero. The circuit diagram is shown in Figure 12.2.5.

Figure 12.2.5 A purely capacitive circuit

We would like to find the current in the circuit,
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1.(1)=1,,sin(@t—¢,). (12.2.22)

Again, Kirchhoff’s loop rule yields
V(t)—Vc(t)=V(t)—Q%t):0. (12.2.23)

The charge on the capacitor is therefore
o)=CV(t)=CV_(t)=CV, sin(w1), (12.2.24)

where V., =V, . The current is

dQ .
1.(t)= .|_Z =wCV,, cos(wt)=wCV, sin(wt+7mw/2) ’ (12.2.25)

=1, sin(wt+7/2),

where we have used the trigonometric identity cosw? =sin(w¢+ 7z /2). The maximum
value of the current can be determined by comparing Eq. (12.2.25) to Eq. (12.2.22),

ICO=0)CVCO:@, (12.2.26)
XC
where the capacitance reactance, X ., is
X L (12.2.27)

The capacitive reactance also has SI units of ohms and represents the ‘“effective
resistance” for a purely capacitive circuit. Note that X . is inversely proportional to both

C and w , and diverges as @ approaches zero.

The phase constant can be determined by comparing Eq. (12.2.25) to Eq. (12.2.22), and is
o, =—2. (12.2.28)

The current and voltage plots and the corresponding phasor diagram are shown in the
Figure 12.2.6 below.
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(a) (b)

Figure 12.2.6 (a) Time dependence of /.(¢) and V,.(¢) across the capacitor. (b) Phasor
diagram for the capacitive circuit.

Notice that at ¢ =0, the voltage across the capacitor is zero while the current in the circuit
is at a maximum. In fact, /.(¢) reaches its maximum one quarter of a cycle earlier than

Ve(@®).

The current leads the voltage by z/2 in a capacitive circuit

The word “lead” means that the plot of 7.(¢) is shifted to the left of the plot of V_.(¢) in
Figure 12.2.6 (a), whereas in the phasor diagram the phasor I o(#) 1s “ahead” the phasor
for VC (¢) as they rotate counterclockwise in Figure 12.2.6(b).

12.3 The RLC Series Circuit

Consider now the driven series RLC circuit with V' (¢) =V, sin(wt + ¢) shown in Figure
12.3.1.

Figure 12.3.1 Driven series RLC Circuit
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We would like to find the current in the circuit,
I(t)=1,sin(wt) . (12.3.1)

Notice that we have added a phase constant ¢ to our previous expressions for V' (¢) and
I(t) when we were analyzing single element driven circuits. Applying Kirchhoff’s
modified loop rule, we obtain

V)=V, ()-V, (1)-V.(t)=0. (12.3.2)
We can rewrite Eq. (12.3.2) using V,(£)= IR, V (t)=Ldl / dt ,and V. (t)=Q/ C as

dI 0 .
L=+ IR+ =V, sin(@r +9). (12.3.3)

Differentiate Eq. (12.3.3), using / =+dQ/dt, and divide through by L, yields what is
called a second order damped linear driven differential equation,

d’I Rdl 1 oV,
— t——+—= cos(wt + @) |. (12.3.4)
dt Ldt LC L

We shall find the amplitude, 7, of the current, and phase constant ¢ which is the phase

shift between the voltage source and the current by examining the phasors associates with
the three circuit elements R, L and C.

The instantaneous voltages across each of the three circuit elements R, L, and C has a

different amplitude and phase compared to the current, as can be seen from the phasor
diagrams shown in Figure 12.3.2.

(a) (b) (c)

Figure 12.3.2 Phasor diagrams for the relationships between current and voltage in (a)
the resistor, (b) the inductor, and (c) the capacitor, of a series RLC circuit.
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Using the phasor representation, Eq. (12.3.2) can be written as

Vo=V + V00 Ve, (12.3.5)
as shown in Figure 12.3.3(a). Again we see that current phasor fo leads the capacitive

voltage phasor V., by 7/2 but lags the inductive voltage phasor ¥,, by 7 /2. The three

voltage phasors rotate counterclockwise as time increases, with their relative positions
fixed.

Figure 12.3.3 (a) Phasor diagram for the series RLC circuit. (b) voltage relationship

The relationship between different voltage amplitudes is depicted in Figure 12.3.3(b).
From Figure 12.3.3, we see that the amplitude satisfies

Vo =I Vo = VRO +I7LO +I7c0 |:\/VRZO +(V, _Vco)2

= (X, +(IX, - 1.X,) (12.3.6)

= I X 2 +H(X, - X, ).

Therefore the amplitude of the current is

Y,
I, (12.3.7)

JX2+(X, - X,

Using Egs. (12.2.5), (12.2.20), and (12.2.27) for the reactances, Eq. (12.3.7) becomes

V
I, = 0 , series RLC circuit. (12.3.8)
1
R*+(wL——)
\/ ( a)C)

From Figure 12.3.3(b), we can determine that the phase constant satisfies
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tang = XX | L. (12.3.9)
X R wC

Therefore the phase constant is

(;)ztan*ll coL—L , series RLC circuit . (12.3.10)
R oC

It is crucial to note that the maximum amplitude of the AC voltage source ¥ is not equal
to the sum of the maximum voltage amplitudes across the three circuit elements:

Vo £V +V,0+ Voo (12.3.11)

This is due to the fact that the voltages are not in phase with one another, and they reach
their maxima at different times.

12.3.1 Impedance

We have already seen that the inductive reactance X, =wL , and the capacitive reactance
X.=1/wC play the role of an effective resistance in the purely inductive and capacitive

circuits, respectively. In the series RLC circuit, the effective resistance is the impedance,
defined as

Z=X7+(X,-X.) (12.3.12)

The relationship between Z, X, X, ,and X can be represented by the diagram shown
in Figure 12.3.4: X, — X,

Figure 12.3.4 Vector representation of the relationship between Z, X, X, ,and X.

The impedance also has SI units of ohms. In terms of Z, the current (Egs. (12.3.1) and
(12.3.7)) may be rewritten as
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I(t):%sin((ot) (12.3.13)

Notice that the impedance Z also depends on the angular frequency w, as do X, and
X,.

Using Eq. (12.3.9) for the phase constant ¢ and Eq. (12.3.12) for Z, we may readily

recover the limits for simple circuit (with only one element). A summary is provided in
Table 12.1 below:

Simple 1 (Xmx ) | Z=X X, - X
X, =wL =— = R L c

Cirewit | R | L | © | Xm0l | Xe=pom | 9=tan [ X,

purely

resistive R 0 o 0 0 0 X R

purely

inductive L e X 0 m/2 X

purely 19 o | ¢ | 0 X, /2 X,

capacitive

Table 12.1 Simple-circuit limits of the series RLC circuit
12.3.2 Resonance

In a driven RLC series circuit, the amplitude of the current (Eq. (12.3.8)) has a
maximum value, a resonance, which occurs at the resonant angular frequency @, .

Because the amplitude /; of the current is inversely proportionate to Z (Eq. (12.3.13),
the maximum of /, occurs when Z is minimum. This occurs at an angular frequency @,
such that X, =X,

1
w,L=—-:. (12.3.14)
o,C
Therefore, the resonant angular frequency is
1
0 =——. (12.3.15)
" JLC

At resonance, the impedance becomes Z = R, and the amplitude of the current is
V.
IO:EO, (12.3.16)
and the phase constant is zero, (Eq. (12.3.10)),
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6=0. (12.3.17)

A qualitative plot of the amplitude of the current as a function of driving angular
frequency for two driven RLC circuits, with different values of resistance, R, > R, is

illustrated in Figure 12.3.5. The amplitude is larger for smaller a smaller value of
resistance.

Figure 12.3.5 The amplitude of the current as a function of @ in the driven RLC circuit,
for two different values of the resistance.

12.4 Power in an AC circuit

In the series RLC circuit, the instantaneous power delivered by the AC generator is given
by
v, . v: .
P(t)= 1)V (t) = — sin(wt) -V, sin(@t + ) = —sin(@1) sin( @t + @)
2 z Z (12.4.1)

= V7° (sin*(wt)cos ¢ + sin(wt ) cos(wt) sin @)

where we have used the trigonometric identity
sin(wt + ¢) = sin(wt)cos ¢ + cos(wt)sing . (12.4.2)
The time average of the power is

2

eV} 1 (rV? . 1Y,
<P(a))> = ?JO 7sm (wt)cos¢ dt + ?JO 7sm(wt)cos(a)t)s1n¢ dt = 57005(]) (12.4.3)
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where we have used the integral results in Eq. (12.2.9). In terms of the rms quantities,

v =V,/ \/5 and I =V_ /Z,the time-averaged power can be written as

m

2 2

<P(a))>=é%cos¢:%cos¢:l V cos¢ (12.4.4)

ms rms

The quantity cos¢ is called the power factor. From Figure 12.3.4, one can readily show
that

R
cosp=—. 12.4.5
) ~ ( )

Thus, we may rewrite <P(a))> as
(P(@) =1} (0)R, (12.4.6)

where

Y,
(12.4.7)

L
V2 \/Rz +(wL - i)z
oC

In Figure 12.4.1, we plot the time-averaged power as a function of the driving angular
frequency @ for two driven RLC circuits, with different values of resistance, R, > R,.

I, (@)=

Figure 12.4.1 Average power as a function of frequency in a driven series RLC circuit.
We see that <P(a))> attains the maximum value when cos@ =1, or Z= R, which is the
resonance condition. At resonance, we have

2

(P(w))=1_7. e (12.4.8)

rms rms R
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12.4.1 Width of the Peak

The peak has a line width. One way to characterize the width is to define Aw=w, —w_,

where w, are the values of the driving angular frequency such that the power is equal to

half its maximum power at resonance. This is called full width at half maximum, as

illustrated in Figure 12.4.2. The width Aw increases with resistance R .

Figure 12.4.2 Width of the peak

To find Aw, it is instructive to first rewrite the average power <P(co)> as

2 2 2
VOR 1 VORa)

(P())=

with (P(w,))="V; /2R . The condition for finding w, is

V2 1 VOZR(D;

1
2R +(wL-1/0Cy 20°R*+ (0 ~0)’

H{P(@))=(Pw,) = 2

0

Eq. (12.4.10) reduces to
RoY
(- [ j .

Taking square roots yields two solutions, which we analyze separately.

Case 1: Taking the positive root leads to

E_Ewisz + (o, -w))

(12.4.9)

(12.4.10)

(12.4.11)

(12.4.12)
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We can solve this quadratic equation, and the solution with positive root is

2
0] :£+ (%] +a)02. (12.4.13)

Case 2: Taking the negative root of Eq. (12.4.12) yields

wf—wgz—%. (12.4.14)

The solution to this quadratic equation with positive root is

2
a)_:—£+ [%} +o,” . (12.4.15)

The width at half maximum is then the difference

Aw:w+—a)_:£. (12.4.16)
L
Once the width Aw is known, the quality factor Q_, is defined as
0 SO Bk (12.4.17)
qual A® R : o

Comparing the above equation with Eq. (11.10.17), we see that both expressions agree
with each other in the limit where the resistance is small, and @’ =+/@; —(R/2L)* = w,.

12.5 Transformer

A transformer is a device used to increase or decrease the AC voltage in a circuit. A
typical device consists of two coils of wire, a primary and a secondary, wound around an
iron core, as illustrated in Figure 12.5.1. The primary coil, with N, turns, is connected to

alternating voltage source V(¢). The secondary coil has N, turns and is connected to a

load with resistance R,. The way transformers operate is based on the principle that an

alternating current in the primary coil will induce an alternating emf on the secondary
coil due to their mutual inductance.
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Figure 12.5.1 A transformer

In the primary circuit, neglecting the small resistance in the coil, Faraday’s law of
induction implies
do,

h=hy,

: (12.5.1)

where @, is the magnetic flux through one turn of the primary coil. The iron core, which

extends from the primary to the secondary coils, serves to increase the magnetic field
produced by the current in the primary coil and ensures that nearly all the magnetic flux
through the primary coil also passes through each turn of the secondary coil. Thus, the
voltage (or induced emf) across the secondary coil is

d®,

ey

(12.5.2)

In the case of an ideal transformer, power loss due to Joule heating can be ignored, so
that the power supplied by the primary coil is completely transferred to the secondary coil,

1V, =LV,. (12.5.3)

In addition, no magnetic flux leaks out from the iron core, and the flux ®, through each

turn is the same in both the primary and the secondary coils. Combining the two
expressions, we are lead to the transformer equation,

Lo (12:5.4)
nom

By combining the two equations above, the transformation of currents in the two coils
may be obtained as

V. N
[ =-2] =—2]. (12.5.5)
V2 N
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Thus, we see that the ratio of the output voltage to the input voltage is determined by the
turn ratio N,/ N,. If N,>N,, then V, >V, which means that the output voltage in the

second coil is greater than the input voltage in the primary coil. A transformer with
N, >N, is called a step-up transformer. On the other hand, if N, <N,, then V, <V, and

the output voltage is smaller than the input. A transformer with N, <N, is called a step-
down transformer.

12.6 Parallel RLC Circuit

Consider the parallel RLC circuit illustrated in Figure 12.6.1. The AC voltage source is
V(t)=V,sin(wt).

Figure 12.6.1 Parallel RLC circuit.
Unlike the series RLC circuit, the instantaneous voltages across all three circuit elements
R, L, and C are the same, and each voltage is in phase with the current through the

resistor. However, the currents through each element will be different.

In analyzing this circuit, we make use of the results discussed in Sections 12.2 — 12.4.
The current in the resistor is

IR(t)z%f):%sin(a)t)z I,,sin(wt). (12.6.1)

where ., =V, /R . The voltage across the inductor is

V0=V (=7, sin(n =1L (12.62)

Integrating Eq. (12.6.2) yields

Vo N V V.. .
I,(t)= J.Ofosm(a)t )dt'= —w—OLcos(a)t) = Yosm(a)t -n/2)=1,,sin(wt—m/2),12.6.3)

L
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where I,,=V,/ X, and X, =wL is the inductive reactance.

Similarly, the voltage across the capacitor is V,(¢) =V, sin(wt) = Q(¢) / C, which implies

V
1.()= cj{—? =wCV, cos(wr) = 7°sin(wt+ w/2)=1.sin(t+r/2), (12.6.4)

C

where /., =V,/ X, and X.=1/wC is the capacitive reactance.

Using Kirchhoff’s junction rule, the total current in the circuit is simply the sum of all
three currents.

1) = 1,(t)+ 1,()+ 1,(2)

=1, sin(ot)+ I, sin(ot -/ 2)+ I, sin(wt + 7/ 2). (1265)
The currents can be represented with the phasor diagram shown in Figure 12.6.2.
Figure 12.6.2 Phasor diagram for the parallel RLC circuit
From the phasor diagram, the phasors satisfy the vector addition condition,
Iy=To+1,,+ 1. (12.6.6)

The amplitude of the current, /, can be obtained as

= = - = 2 2
L= 1 H L+ 1+ 1 \/IRO +(Uy— 1)

c
2
) LY ) L1 : (12.6.7)
=V, =+ 0oC-—| =V, | —5+| ———
R’ oL X X, X,
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Therefore the amplitude of the current is

2
0= VO\/ 12 +[L—Lj , parallel RLC circuit. (12.6.8)
X2 X, X,

R

From the phasor diagram shown in Figure 12.6.2, we see that the tangent of the phase
constant can be obtained as

W _"

tan ¢ = o=ty | Xe Xy _pf 1 _ 1 =R[a)C—Lj. (12.6.9)
I, Vy X, X, oL
R

Therefore the phase constant is

¢=tan"' [Ra)C - iLj’ parallel RLC circuit . (12.6.10)
®

Because /,(t), I,(t) and I.(¢) are not in phase with one another, /, is not equal to the
sum of the amplitudes of the three currents,

Iy # 1 +1,,+1. (12.6.11)

With [, =V, / Z, the (inverse) impedance of the circuit is given by

2 2
LY I (PAVCRNLI I B (O R (12.6.12)
Z \\R? oL X, X. X,

The relationship between Z, X,, X, and X is shown in Figure 12.6.3.

Figure 12.6.3 Relationship between Z, X, X, and X ina parallel RLC circuit.
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The resonance condition for the parallel RLC circuit is given by ¢ =0, which implies

L:L. (12.6.13)
XC XL
We can solve Eq. (12.6.13) for the resonant angular frequency and find that
1
W, =—F— (12.6.14)

0 \/L_ :

as in the series RLC circuit. From Eq. (12.6.12), we readily see that 1/Z is minimum (or
Z is maximum) at resonance. The current in the inductor exactly cancels out the current
in the capacitor, so that the current in the circuit reaches a minimum, and is equal to the
current in the resistor,

v
ly="2 (12.6.15)

As in the series RLC circuit, power is dissipated only through the resistor. The time-
averaged power is

P(t))=(I1(t)V(t))=(1. R—V02 in’ e Wz 12.6.16
(PW)= (1,07 (0)=(1(R)=2(sin’ (@)= %= - (12.6.16)
Thus, the power factor in this case is
P(t
power factor = <2 ( )> zgz ! =cos¢. (12.6.17)
Vil2Z R

2
JH(M_R]
ol
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12.7 Summary

* Inan AC circuit with a sinusoidal voltage source V' (¢) =V, sin(wt), the current is
given by I(t)=1,sin(wt—¢), where /; is the amplitude and ¢ is the phase
constant (phase difference between the voltage source and the current). For simple

circuit with only one element (a resistor, a capacitor or an inductor) connected to
the voltage source, the results are as follows:

. Resistance Current
Circuit Elements /Reactance Amplitude Phase constant ¢
V.
R IRO = EO 0
Vi n/2
X, =oL I,=—> .
L X, current lags voltage by 90
1 _W - /2
X.=— I, .
woC X, current leads voltage by 90

where X, is the inductive reactance and X . is the capacitive reactance.

* For circuits which have more than one circuit element connected in series, the
results are

Circuit Elements Impedance Z Current Amplitude Phase constant ¢
4 T
2 2 I = 0 <<=
R+ X; 0 ,7R2+XL2 0<¢ 5
|4
2 2 I, =—— _r
R+ X, "R+ x2 2<q><0
v, >0 if X, > X,
R+ -x ) | b e oy oS
' R+ (X, —X0) $p<0 1if X, <X,

where Z is the impedance Z of the circuit. For a series RLC circuit, we have

Z=\R+(x,-X.) .

The phase constant (phase difference between the voltage and the current) in an

AC circuit is
X -X
¢ — tan71 (Q]'
R
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In the parallel RLC circuit, the impedance is given by

1|1 1Y |1 1 1Y
7z \R ol R | x, X,

The average power of an AC circuit is

(P(1)) =1,V cOSO
where cos¢ is known as the power factor.
The resonant angular frequency @, is

|
O, =——

T

At resonance, the current in the series RLC circuit reaches the maximum, but the
current in the parallel RLC circuit is at a minimum.

The transformer equation is

NS
I
=z|=

where V] is the voltage source in the primary coil with N, turns, and V) is the
output voltage in the secondary coil with N, turns. A transformer with N, >N, is
called a step-up transformer, and a transformer with N, <N, is called a step-down
transformer.
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12.8 Problem-Solving Tips

In this chapter, we have seen how phasors provide a powerful tool for analyzing the AC
circuits. Below are some important tips:

1. Keep in mind the phase relationships for simple circuits

(1) For a resistor, the voltage and the phase are always in phase.
(2) For an inductor, the current lags the voltage by 90°.
(3) For a capacitor, the current leads the voltage by 90°.

2. When circuit elements are connected in series, the instantaneous current is the same for
all elements, and the instantaneous voltages across the elements are out of phase. On
the other hand, when circuit elements are connected in parallel, the instantaneous
voltage is the same for all elements, and the instantaneous currents across the elements
are out of phase.

3. For series connection, draw a phasor diagram for the voltages. The amplitudes of the
voltage drop across all the circuit elements involved should be represented with
phasors. In Figure 12.8.1 the phasor diagram for a series RLC circuit is shown for
both the inductive case X, > X and the capacitive case X, < X..

(a) (b)

Figure 12.8.1 Phasor diagram for the series RLC circuit for (a) X, > X, and (b)
X, <X..

From Figure 12.8.1(a), we see that V,, >V, in the inductive case and ¥, leads I, by a
phase constant ¢ . For the capacitive case shown in Figure 12.8.1(b), V., >V,, and I,

leads ¥, by a phase constant ¢ .
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4. When V,,=V,,, or =0, the circuit is at resonance. The corresponding resonant

angular frequency is w,=1/vLC, and the power delivered to the resistor is a

maximum.
5. For parallel connection, draw a phasor diagram for the currents. The amplitudes of the
currents across all the circuit elements involved should be represented with phasors. In

Figure 12.8.2 the phasor diagram for a parallel RLC circuit is shown for both the
inductive case X, > X and the capacitive case X, < X .

(a) (b)

Figure 12.8.2 Phasor diagram for the parallel RLC circuit for (a) X, > X, and (b)
X, <X..

From Figure 12.8.2(a), we see that 1,, > I, in the inductive case and ¥, leads I, by a
phase constant ¢ . For the capacitive case shown in Figure 12.8.2(b), I, > 1,, and I,

leads ¥, by a phase constant ¢ .

12.9 Solved Problems

12.9.1 RLC Series Circuit

A series RLC circuit with L =160 mH, C = 100 uF, and R =40.0Q2 is connected to a
sinusoidal voltage V' (¢) = (40.0 V)sin(wt) , with @ =200 rad/s.

(a) What is the impedance of the circuit?
(b) Let the current at any instant in the circuit be /(¢) = I sin(@t — ¢) . Find /.

(c) What is the phase constant ¢ ?
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Solution:

(a) The impedance of a series RLC circuit is given by

Z=R+(X,-X.) (12.9.1)

where X, =wL and X_.=1/@wC are the inductive and capacitive reactances,
respectively. The voltage source is V' (¢) =V sin(wt), where V; is the maximum output
voltage and w is the angular frequency, with ¥, =40 V and @ =200 rad/s. Thus, the
impedance Z is

2
1
(200 rad/s)(100 x 10 F)] (12.9.2)

Z= \/(40.0 Q) + [(200 rad/s)(0.160 H) —
=43.9Q.
(b) With ¥, =40.0V, the amplitude of the current is given by

IO:&:4O'OV:O.911A. (12.9.3)
Z 439Q

(c) The phase constant (the phase difference between the voltage source and the current)
is given by

| (12.9.4)

(200 rad/s)(100 x 10™° F)
40.0 Q

(200 rad/s)(0.160 H) —

= tan™’

=-24.2°.

12.9.2 RLC Series Circuit

Suppose an AC generator with V' (¢) = (150V)sin(100¢) is connected to a series RLC
circuit with R=40.0 Q, L=80.0 mH, and C=50.0 uF, as shown in Figure 12.9.1.
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Figure 12.9.1 RLC series circuit

(a) Calculate V,,, V,, and V,,, the maximum values of the voltage drop across each

circuit element.

(b) Calculate the maximum potential difference across the inductor and the capacitor
between points b and d shown in Figure 12.9.1.

Solutions:

(a) The inductive reactance, capacitive reactance and the impedance of the circuit are
given by

X, = L _ : ——=200Q, (12.9.5)
oC (100 rad/s)(50.0 x 10 F)
X, =L =(100 rad/s)(80.0x 10~ H)=8.00 Q. (12.9.6)

The impedance is

Z =R +(X, - X} =/(40.0 Q) +(8.00 Q-200 Q) =196 Q. (12.9.7)

The corresponding maximum current amplitude is

1, :&:M:O.%SA. (12.9.8)
Z 196 Q

The maximum voltage across the resistance is the product of maximum current and the
resistance,

V., =1 R=(0.765 A)(40.0 Q)=30.6V. (12.9.9)

Similarly, the maximum voltage across the inductor is
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v, =1,X,=(0.765 A)8.00 Q)=6.12V. (12.9.10)

The maximum voltage across the capacitor is

V., =1,X,=(0.765 A)200 Q)= 153 V. (12.9.11)

Note that the maximum input voltage ¥ is related to V., V,, and V., by

Vo= Vo + V=V (12.9.12)
(b) From b to d, the maximum voltage would be the difference between V,, and V.,

Vi |=1V,0 +Veo |21V, =V |21 6.12 V=153 V| =147 V.. (12.9.13)

12.9.3 Resonance

A sinusoidal voltage V' (¢) =(200V)sin(w?) is applied to a series RLC circuit with
L=10.0 mH, C =100 nF,and R =20.0 Q. Find the following quantities:

(a) the resonant frequency,
(b) the amplitude of the current at resonance,

. of the circuit, and

(c) the quality factor Qqua

(d) the amplitude of the voltage across the inductor at the resonant frequency.

Solution:

(a) The resonant frequency for the circuit is given by

o, 1 [1 1 1
e Ry . B - —— =5033Hz. (12.9.14)
2 2z NLC 27\ (10.0x107° H)(100x 10 F)

(b) At resonance, the current is

200 V
20.0 Q

IO:%: =10.0A. (12.9.15)
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. of the circuit is given by

(c) The quality factor Qqua

o - w,L  2m(503357")(10.0x107 H)
al =R (20.0 Q)

=15.8. (12.9.16)

(d) At resonance, the amplitude of the voltage across the inductor is

V,=1X,=1Io,L=(10.0 A)27(5033 s")(10.0x 107 H)=3.16x10°V. (12.9.17)

12.9.4 RL High-Pass Filter
A RL high-pass filter (circuit that filters out low-frequency AC currents) can be

represented by the circuit in Figure 12.9.2, where R is the internal resistance of the
inductor.

Figure 12.9.2 RL filter

(a) Find V,,/V,,, the ratio of the maximum output voltage V,, to the maximum input

voltage V.

(b) Suppose r=15.0 Q2, R=10Q, and L=250 mH. Find the frequency at which
V! Vy=1/2.

Solution:

(a) The impedance for the input circuit is Z, =+/(R+7)’+ X, where X, =wL. The
impedance for the output circuit is Z, =+/R*> + X, . The maximum current is given by

JRAT—" (12.9.18)

Z, JR+r+Xx>

Similarly, the maximum output voltage is related to the output impedance by
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Vy=1,Z,=I,\|R*+ X" . (12.9.19)

Vo o NRHX, (12.9.20)
Vo J(R+r)+X?

This implies

(b) For V,,/V,, =1/2, we have

2 2 2 2
X +2XL 2 :l = X, :\/(R-l-—l’) iR . (12.9.21)
(R+r)y +X, 4 3

Because X, =wL =2r fL, the frequency that yields this ratio is

X, 1 (10.0 Q+15.0 Q)* —4(10.0 Q)°
2nL  2m(0.250 H) 3

f =551Hz. (12.9.22)

12.9.5 RLC Circuit

Figure 12.9.3

Consider the circuit shown in Figure 12.9.3. The sinusoidal voltage source is
V(t)=V,sin(wt). If both switches S, and §, are closed initially, find the following

quantities, ignoring the transient effect and assuming that R, L, V,, and w are known.
(a) The current /(¢) as a function of time.

(b) The average power delivered to the circuit.

(c) The current as a function of time a long time after only S, is opened.
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(d) The capacitance C if both S, and §, are opened for a long time, with the current and

voltage in phase.
(e) The impedance of the circuit when both S, and §, are opened.

(f) The maximum energy stored in the capacitor during oscillations.

(g) The maximum energy stored in the inductor during oscillations.

(h) The phase difference between the current and the voltage if the frequency of V() is

doubled.

(1) The frequency at which the inductive reactance X, is equal to half the capacitive

reactance X.

Solutions:

(a) When both switches S, and S, are closed, the current only goes through the generator

and the resistor, so the total impedance of the circuit is R and the current is

v, .
1.()= Esm((x)t) .
(b) The average power is given by
2 2

(P0))=(1, () (1)) = %<sin2(wt)> = ZLR .

(12.9.23)

(12.9.24)

(c) If only S, is opened, after a long time the current will pass through the generator, the

resistor and the inductor. For this RL circuit, the impedance becomes

1 1
JR+x7 R+l

oL
¢ =tan (R j

Thus, the current as a function of time is

7=

and the phase constant ¢ is

I(t) =1 sin(wt — ¢) = Lsin[mt —tan"'(wL / R)].

R*+0’I*

(12.9.25)

(12.9.26)

(12.9.27)
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Note that in the limit of vanishing resistance R=0, ¢ =z /2, and we recover the
expected result for a purely inductive circuit.

(d) If both switches are opened, then this would be a driven RLC circuit, with the phase
constant ¢ given by

Y X oL ——
¢=tan" | St "€ |=an~| — @C | (12.9.28)
R R

If the current and the voltage are in phase, then ¢ =0, implying tan@ =0. Let the
corresponding angular frequency be ,; we then obtain

w,L=——. 12.9.29
" wC ( )
Therefore the capacitance is
c=—L (12.9.30)
w, L

(e) From (d), when both switches are opened, the circuit is at resonance with X, = X ..
Thus, the impedance of the circuit becomes

Z=\JR+(X,-X.)’ =R. (12.9.31)

(f) The electric energy stored in the capacitor is

U, = %CVg = %C([ch . (12.9.32)

It attains maximum when the current is at its maximum /,,

1 1 (V.Y 1 V2L
U. =—CI’X*=-C|| —_-To= 12.9.33
C,max 2 0 C 2 (R j a)02c2 2R2 ( )

where we have used @} =1/LC.

(g) The maximum energy stored in the inductor is given by

2
U, =rr2 =

L,max 2 0o 2R2 . (12934)
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(h) If the frequency of the voltage source is doubled, i.e., @ =2w, =1/+LC, then the
phase constant becomes

6= tan” [“’L‘—”“’CJ _ tan—l((z INLO)L ;{(‘/E / 2C)] ~ tan"" [i\g} L (12.9.35)

R 2R

(1) If the inductive reactance is one-half the capacitive reactance,

1 B

X ==X. = wL=——. 12.9.36
Lo2o© 2wC ( )
This occurs when eh angular frequency is
o= =% (12.9.37)
2LC V2 .

12.9.6 RL Filter

The circuit shown in Figure 12.9.4 represents a RL filter.

Figure 12.9.4

Let the inductance be L = 400 mH, and the input voltage V. =(20.0V)sin(wt), where
=200 rad/s .

(a) What is the value of R such that the output voltage lags behind the input voltage by
30.0°7?

(b) Find the ratio of the amplitude of the output and the input voltages. What type of filter
is this circuit, high-pass or low-pass?

(c) If the positions of the resistor and the inductor were switched, would the circuit be a
high-pass or a low-pass filter?
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Solutions:

(a) Because the output voltage V_ is measured across the resistor, it is in phase with the

current. Therefore the phase difference ¢ between V| and V. is equal to the phase

constant and satisfies

v
tang =+ = =—. (12.9.38)

=
e
h

Thus, we have
wL  (200rad/s)(0.400 H)

R= = =139Q. (12.9.39)
tan ¢ tan30.0°
(b) The ratio is given by
V. Vi R
=L =—0n=—o-—=co0s¢ =c0s30.0°=0.866. (12.9.40)
Vo Vi JR+X;

The circuit is a low-pass filter, since the ratio V, , /V; decreases with increasing ®.

(c) In this case, the circuit diagram is

Figure 12.9.5 RL high-pass filter

The ratio of the output voltage to the input voltage would be

14 X 0’12 rRY"
out — L L = = 1+ e — .
Vo Va JR+X? R +0D (wL ]

The circuit is a high-pass filter, since the ratio V, /¥, approaches one in the limit as
w>>R/L.
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12.10 Conceptual Questions

1. Consider a purely capacitive circuit (a capacitor connected to an AC source).

(a) How does the capacitive reactance change if the driving frequency is doubled?
halved?

(b) Are there any times when the capacitor is supplying power to the AC source?

2. 1If the applied voltage leads the current in a series RLC circuit, is the frequency
above or below resonance?

3. Consider the phasor diagram shown in Figure 12.10.1 for a series RLC circuit.

Figure 12.10.1

(a) Is the driving frequency above or below the resonant frequency?
(b) Draw the phasor 170 associated with the amplitude of the applied voltage.

(c) Give an estimate of the phase constant ¢ between the applied AC voltage and the

current.

4. How does the power factor in a RLC circuit change with resistance R,
inductance L, and capacitance C?

5. Can a battery be used as the primary voltage source in a transformer?

6. If the power factor in a RLC circuit is cos¢ =1/2, can you tell whether the
current leading or lagging the voltage? Explain.
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12.11 Additional Problems

12.11.1 Reactance of a Capacitor and an Inductor

(a) A C=0.5—uF capacitor is connected, as shown in Figure 12.11.1(a), to an AC
generator V' (¢) =V, sin(wt) with ¥, =300 V. What is the amplitude /, of the resulting
alternating current if the angular frequency  is (i) 100 rad/s, and (ii) 1000 rad/s?

(a) (b)
Figure 12.11.1 (a) A purely capacitive circuit, and (b) a purely inductive circuit.

(b) A 45-mH inductor is connected, as shown in Figure 12.10.1(b), to an AC generator
V(t)=V,sin(wt) with ¥, =300 V. The inductor has a reactance X, =1300 Q.

(1) What is the applied angular frequency @ and, (ii) the applied frequency f°, in order
that X, =1300 Q?

(ii1) What is the amplitude /, of the resulting alternating current?

(c) At what frequency f* would our 0.5-uF capacitor and our 45-mH inductor have the

same reactance? What would this reactance be? How would this frequency compare to
the natural resonant frequency of free oscillations if the components were connected as
an LC oscillator with zero resistance?

12.11.2 Driven RLC Circuit Near Resonance

The circuit shown in Figure 12.11.2 contains an inductor L, a capacitor C, and a resistor
R in series with an AC generator, which provides a source of sinusoidally varying emf
V(t)=V,sin(wt). This emf drives current /(¢) = [ sin(wt —¢) through the circuit at
angular frequency @.

12-38



Figure 12.11.2

(a) At what angular frequency @ will the circuit resonate with maximum response, as
measured by the amplitude /, of the current in the circuit? What is the value of the

maximum current amplitude /_,_?

(b) What is the value of the phase constant ¢ (the phase difference between V' (¢) and
1(t)) at this resonant angular frequency?

(c) Suppose the angular frequency w is increased from the resonance value until the
/<2 . What is new value of the
phase difference ¢ between the emf and the current? Does the current lead or lag the

amplitude /, of the current decreases from /___ to /

max

emf?

12.11.3 RC Circuit

A series RC circuit with R=4.0x10°Q and C=0.40 uF is connected to an AC voltage
source V(¢)= (100 V)sin(wt) , with @ =200 rad/s.

(a) What is the rms current in the circuit?
(b) What is the phase difference between the voltage and the current?
(c) Find the power dissipated in the circuit.

(d) Find the voltage drop both across the resistor and the capacitor.
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12.11.4 Black Box

An AC voltage source is connected to a “black box” which contains a circuit, as shown in
Figure 12.11.3.

Figure 12.11.3 A “black box” connected to an AC voltage source.

The elements in the circuit and their arrangement, however, are unknown. Measurements
outside the black box provide the following information: V' (¢)=(80 V)sin(®wt?), and

I(t) = (1.6 A)sin(wt +45°).

(a) Does the current lead or lag the voltage?

(b) Is the circuit in the black box largely capacitive or inductive?
(c) Is the circuit in the black box at resonance?

(d) What is the power factor?

(e) Does the box contain a resistor? A capacitor? An inductor?

(f) Compute the average power delivered to the black box by the AC source.

12.11.5 Parallel RL Circuit

Consider the parallel RL circuit shown in Figure 12.11.4.

Figure 12.11.4 Parallel RL circuit
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The AC voltage source is V' (¢) =V, sin(wt).

(a) Find the current across the resistor.

(b) Find the current across the inductor.

(c) What is the magnitude of the total current?
(d) Find the impedance of the circuit.

(e) What is the phase difference between the current and the voltage?

12.11.6 Parallel RC Circuit

Consider the parallel RC circuit shown in Figure 12.11.5.

Figure 12.11.5 Parallel RC circuit
The AC voltage source is V' (¢) =V, sin(wt?).

(a) Find the current across the resistor.

(b) Find the current across the capacitor.

(c) What is the magnitude of the total current?
(d) Find the impedance of the circuit.

(e) What is the phase difference between the current and the voltage?

12.11.7 Power Dissipation

A series RLC circuit with R=10.0 Q, L=400 mH, and C=2.0 uF is connected to an
AC voltage source V(¢) =V, sin(wt) that has amplitude V; =100 V.
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(a) What is the resonant angular frequency @, ?

(b) Find the rms current at resonance.

(c) Let the driving angular frequency be @ =4000 rad/s. Compute X., X,, Z,and ¢.

12.11.8 FM Antenna

An FM antenna circuit (shown in Figure 12.11.6) has an inductance L=10"° H, a
capacitance C=10"" F, and a resistance R=100Q . A radio signal induces a

sinusoidally alternating emf in the antenna with amplitude 10~ V .

Figure 12.11.6

(a) For what angular frequency @, (radians/sec) of the incoming waves will the circuit

be “in tune”-- that is, for what @, will the current in the circuit be a maximum.
(b) What is the quality factor Qqual of the resonance?

(c) Assuming that the incoming wave is “in tune,” what will be the amplitude of the
current in the circuit at this “in tune” angular frequency.

(d) What is the amplitude of the potential difference across the capacitor at this “in
tune” angular frequency?

12.11.9 Driven RLC Circuit

Suppose you want a series RLC circuit to tune to your favorite FM radio station that
broadcasts at a frequency of 89.7MHz. You would like to avoid the station that

broadcasts at 89.5MHz. In order to achieve this, for a given input voltage signal from
your antenna, you want the width of your resonance to be narrow enough at 89.7 MHz

such that the current flowing in your circuit will be 107 times less at 89.5MHz than at
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89.7MHz . You cannot avoid having a resistance of R=0.1Q2, and practical
considerations also dictate that you use the minimum L possible.

(a) In terms of your circuit parameters, L, R and C, what is the amplitude of your
current in your circuit as a function of the angular frequency of the input signal?

(b) What is the angular frequency of the input signal at the desired resonance?
(c) What values of L and C must you use?
(d) What is the quality factor for this resonance?

(e) Show that at resonance, the ratio of the amplitude of the voltage across the inductor
with the driving signal amplitude is the quality of the resonance.

(f) Show that at resonance the ratio of the amplitude of the voltage across the capacitor
with the driving signal amplitude is the quality of the resonance.

(g) What is the time-averaged power at resonance that the signal delivers to the circuit?

(h) What is the phase constant for the input signal at 89.5MHz?
(1) What is the time-averaged power for the input signal at 89.5MHz ?

(j) Is the circuit capacitive or inductive at 89.5 MHz ?
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