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Inductance and Magnetic Energy

11.1 Mutual Inductance

Suppose two coils are placed near each other, as shown in Figure 11.1.1

Figure 11.1.1 Changing current in coil 1 produces changing magnetic flux in coil 2.

The first coil has N, turns and carries a current /, which gives rise to a magnetic field

]§1 . The second coil has N, turns. Because the two coils are close to each other, some of
the magnetic field lines through coil 1 will also pass through coil 2. Let @ , denote the

magnetic flux through one turn of coil 2 due to /,. Now, by varying /, with time, there
will be an induced emf associated with the changing magnetic flux in the second coil:

12

do, d (s
€ =—N27=—E”Bl~dA2. (11.1.1)

coil 2

The time rate of change of magnetic flux ® , in coil 2 is proportional to the time rate of

change of the current in coil 1:
do,, dl,
N, " :M”E’ (11.1.2)

where the proportionality constant M , is called the mutual inductance. It can also be

written as

M, =212 (11.1.3)
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The SI unit for inductance is the henry [H]:
lhenry=1H=1T -m*/A . (11.1.4)

We shall see that the mutual inductance M, depends only on the geometrical properties
of the two coils such as the number of turns and the radii of the two coils.

In a similar manner, suppose instead there is a current /, in the second coil and it is
varying with time (Figure 11.1.2). Then the induced emf in coil 1 becomes

do d

_ 21 _ B . JA
£, =-N,—2=—— [[B,-dA,. (11.1.5)

coil 1

and a current is induced in coil 1.

Figure 11.1.2 Changing current in coil 2 produces changing magnetic flux in coil 1.

This changing flux in coil 1 is proportional to the changing current in coil 2,

d®,, dl,
]V1 i :lez, (1116)

where the proportionality constant A, is another mutual inductance and can be written

as

M, =—1"2 (11.1.7)

The mutual inductance reciprocity theorem states that the constants are equal

M,=M, =M, (11.1.8)
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We shall not prove this theorem. It’s left as a difficult exercise for the reader to prove this
result using Ampere’s law and the Biot-Savart law.

Example 11.1 Mutual Inductance of Two Concentric Co-planar Loops

Consider two single-turn co-planar, concentric coils of radii R and R , with R >> R ,
as shown in Figure 11.1.3. What is the mutual inductance between the two loops?

Figure 11.1.3 Two concentric current loops

Solution: The mutual inductance can be computed as follows. Using Eq. (9.1.15) of
Chapter 9, we see that the magnitude of the magnetic field at the center of the ring due to

I, in the outer coil is given by

.l
Blzﬁ. (11.1.9)

1

Because R >> R , we approximate the magnetic field through the entire inner coil by
B, . Hence, the flux through the second (inner) coil is
K1, p LR

(I)IZZBIAZ:HER;:T' (11110)

1 1

Thus, the mutual inductance is given by

® TR’
M= — B (11.1.11)
I 2R,

The result shows that M depends only on the geometrical factors, R and R,, and is

independent of the current /, in the coil.
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11.2 Self-Inductance

Consider again a coil consisting of N turns and carrying current / in the
counterclockwise direction, as shown in Figure 11.2.1. If the current is steady, then the
magnetic flux through the loop will remain constant. However, suppose the current /
changes with time, then according to Faraday’s law, an induced emf will arise to oppose
the change. The induced current will flow clockwise if dI / dt >0, and counterclockwise
if dI / dt <0. The property of the loop in which its own magnetic field opposes any
change in current is called self-inductance, and the emf generated is called the self-

induced emf or back emf, which we denote as €, . The self-inductance may arise from a
coil and the rest of the circuit, especially the connecting wires.

Figure 11.2.1 Magnetic flux through a coil

Mathematically, the self-induced emf can be written as

d®d d ce- -
e =—N—2 —_N—||B-dA. 11.2.1
£ dt dt -U ( )

turn

Because the flux is proportional to the current 7, we can also express this relationship by
e, =—-L—. (11.2.2)

where the constant L is called the self-inductance. The two expressions can be combined

to yield

_ N®,
1

L

(11.2.3)

Physically, the self-inductance L is a measure of an inductor’s “resistance” to the change
of current; the larger the value of L, the lower the rate of change of current.

Example 11.2 Self-Inductance of a Solenoid
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Compute the self-inductance of a solenoid with N turns, length /, and radius R with a
current / flowing through each turn, as shown in Figure 11.2.2.

Figure 11.2.2 Solenoid

Solution: Ignoring edge effects and applying Ampere’s law, the magnetic field inside a
solenoid is given by Eq. (9.4.3)

B u,NI

k=unlk, (11.2.4)

where n= N /[ is the number of turns per unit length. The magnetic flux through each
turn is
®,=BA=punl-(tR*)=unInR’. (11.2.5)

Thus, the self-inductance is

N®
L=—"t= u R (11.2.6)

We see that L depends only on the geometrical factors (7, R and /) and is independent
of the current /.

Example 11.3 Self-Inductance of a Toroid

(a) (b)

Figure 11.2.3 A toroid with N turns
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Calculate the self-inductance L of a toroid, which consists of N turns and has a
rectangular cross section, with inner radius a, outer radius b, and height /4, as shown in
Figure 11.2.3(a).

Solution: According to Ampere’s law (Example 9.5),
gst -ds = gSBds = Bqus =B(2mr) = NI . (11.2.7)
The magnitude of the magnetic field inside the torus is given by

_ 1M
Comr

(11.2.8)

The magnetic flux through one turn of the toroid may be obtained by integrating over the
rectangular cross section, with d4 =hdr as the differential area element (Figure

11.2.3b),
L NI NIh
(I)B:”B-dA:Jj(‘L;OT)hdrzuoz—ln(éj. (11.2.9)

r T a

The total flux is N® . Therefore, the self-inductance is

N® N?h
=225 _Ho h{éj. (11.2.10)

1 21w a

Again, the self-inductance L depends only on the geometrical factors. Let’s consider the
situation where a >> b— a. In this limit, the logarithmic term in the equation above may

be expanded as
1n(é}:1n[1+b_“]zb_“, (11.2.11)
a a a

and the self-inductance becomes

_MN’h b—a _uN'4_uN’4

L )
21 a 2ra /

(11.2.12)

where A= h(b—a) is the cross-sectional area, and /=2ma. We see that the self-
inductance of the toroid in this limit has the same form as that of a solenoid.
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Example 11.4 Mutual Inductance of a Coil Wrapped Around a Solenoid

A long solenoid with length / and a cross-sectional area A consists of N, turns of wire.

An insulated coil of N, turns is wrapped around it, as shown in Figure 11.2.4.

(a) Calculate the mutual inductance M, assuming that all the flux from the solenoid
passes through the outer coil.

(b) Relate the mutual inductance M to the self-inductances L and L, of the solenoid
and the coil.

Figure 11.2.4 A coil wrapped around a solenoid
Solutions:

(a) The magnetic flux through each turn of the outer coil due to the solenoid is

NI
BNy (11.2.13)

®,,=BA="1

where B=u N I /1 is the uniform magnetic field inside the solenoid. Thus, the mutual
inductance is
_N®, uNN,4
L

(11.2.14)

(b) From Example 11.2, we see that the self-inductance of the solenoid with N, turns is
given by
_N®, uNA4
o

: (11.2.15)

where @  is the magnetic flux through one turn of the inner solenoid due to the
magnetic field produced by /. Similarly, we have L, = ‘uoszA /1 for the outer coil. In

terms of L and L,, the mutual inductance can be written as
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M=LL,. (11.2.16)

1772

More generally the mutual inductance is given by
M=k\LL,, 0<k<I, (11.2.17)

where k is the coupling coefficient. In our example, we have k£ =1, which means that all
of the magnetic flux produced by the solenoid passes through the outer coil, and vice
versa, in this idealization.

11.3 Energy Stored in Magnetic Fields

Because an inductor in a circuit serves to oppose any change in the current through it,
work must be done by an external source such as a battery in order to establish a current
in the inductor. From the work-energy theorem, we conclude that energy can be stored in
an inductor. The role played by an inductor in the magnetic case is analogous to that of a
capacitor in the electric case.

The power, or rate at which an external emf £ _ works to overcome the self-induced emf

€, and pass current / in the inductor is

aw
P =—%=]¢_

11.3.1
L= ( )

¢

If only the external emf and the inductor are present, then € _ =—¢, which implies that

t

aw dl
P=—%=_Je =+]L—. 11.3.2
L dt L dt ( )

If the current is increasing with dl /dt >0, then P>0 , which means that the external
source is doing positive work to transfer energy to the inductor. Thus, the internal energy

U, of the inductor is increased. On the other hand, if the current is decreasing with

dl / dt <0, we then have P<0. In this case, the external source takes energy away from
the inductor, causing its internal energy to decrease. The total work done by the external
source to increase the current form zero to / is then

! ' ' 1 2
= [aw, =] Lral =L (11.3.3)

ext

This is equal to the magnetic energy stored in the inductor,
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1
U =5L12. (11.3.4)

B

The above expression is analogous to the electric energy stored in a capacitor,

_1o

Up=22 (11.3.5)

From an energy perspective there is an important distinction between an inductor and a
resistor. Whenever a current / goes through a resistor, energy flows into the resistor and
dissipates in the form of heat regardless of whether / is steady or time-dependent (recall
that power dissipated in a resistor is P, =1V, =1 ’R). Energy flows into an ideal inductor

only when the current is varying with d/ / dt > 0. The energy is not dissipated but stored
there; it is released later when the current decreases with dI / dt <0 . If the current that
passes through the inductor is steady, then there is no change in energy since
P =LI(dl/dt)=0.

Example 11.5 Energy Stored in a Solenoid

A long solenoid with length / and a radius R consists of N turns of wire. A current /
passes through the coil. Find the energy stored in the system.

Solution: Using Egs. (11.2.6) and (11.3.4), we readily obtain

1 1
U, = ELIZ = 5uonzlzru'ezl . (11.3.6)

B
The result can be expressed in terms of the magnetic field strength B=u nl,

1 B’
U,= 2—%(%;11)2(7:1{21) = :(nm) : (11.3.7)

Because mR’[ is the volume within the solenoid, and the magnetic field inside is uniform,
the magnetic energy density, or the energy per unit volume of the magnetic field is
given by

u, = (11.3.8)
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The above expression holds true even when the magnetic field is non-uniform. The result
can be compared with the energy density associated with an electric field,

1
uy==€ E. (11.3.9)

11.3.1 Creating and Destroying Magnetic Energy Animation

Let’s consider the process involved in creating magnetic energy. Here we discuss this
process qualitatively. A quantitative calculation is given in Section 13.6.2. Figure 11.3.1
shows the process by which an external agent(s) creates magnetic energy. Suppose we
have five rings that carry a number of free positive charges that are not moving. Because
there is no current, there is no magnetic field. Suppose a set of external agents come
along (one for each charge) and simultaneously spin up the charges counterclockwise as
seen from above, at the same time and at the same rate, in a manner that has been pre-
arranged. Once the charges on the rings start to move, there is a magnetic field in the
space between the rings, mostly parallel to their common axis, which is stronger inside
the rings than outside. This is the solenoid configuration (see Section 9.4).

Figure 11.3.1 Creating (http://youtu.be/GI2P1rj4CGZI) and destroying
(http://youtu.be/iesoHV{Ig6l ) magnetic field energy.

As the magnetic flux through the rings grows, Faraday’s law of induction tells us that
there is an electric field induced by the time-changing magnetic field that is circulating
clockwise as seen from above. The force on the charges due to this induced electric field
is thus opposite the direction the external agents are trying to spin the rings up
(counterclockwise), and thus the agents have to do additional work to spin up the charges
because of their charge. This is the source of the energy that is appearing in the magnetic
field between the rings — the work done by the agents against the back emf.

Over the course of the “create” animation associated with Figure 11.3.1, the agents
moving the charges to a higher speed against the induced electric field are continually
doing work. The electromagnetic energy is being created at the place where they are
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doing work (the path along which the charges move) and that electromagnetic energy
flows primarily inward, but also outward. The direction of the flow of this energy is
shown by the animated texture patterns in Figure 11.3.1. This is the electromagnetic
energy flow that increases the strength of the magnetic field in the space between the
rings as each positive charge is accelerated to a higher and higher speed. When the
external agents have spun the charges to a pre-determined speed, they stop the
acceleration. The charges then move at a constant speed, with a constant field inside the
solenoid, and zero induced electric field, in accordance with Faraday’s law of induction.

We also have an animation of the “destroy” process linked to Figure 11.3.1. This process
proceeds as follows. Our set of external agents now simultaneously starts to spin down
the moving charges (which are still moving counterclockwise as seen from above), at the
same time and at the same rate, in a manner that has been pre-arranged. Once the charges
on the rings start to decelerate, the magnetic field in the space between the rings starts to
decrease in magnitude. As the magnetic flux through the rings decreases, Faraday’s law
tells us that there is now an electric field induced by the time-changing magnetic field
that is circulating counterclockwise as seen from above. The force on the charges due to
this electric field is thus in the same direction as the motion of the charges. In this
situation the agents have work done on them as they try to spin the charges down.

Over the course of the “destroy” animation associated with Figure 11.3.1, the strength of
the magnetic field decreases, and this energy flows from the field back to the path along
which the charges move, and is now being provided zo the agents trying to spin down the
moving charges. The energy provided to those agents as they destroy the magnetic field
is exactly the amount of energy that they put into creating the magnetic field in the first
place, neglecting radiative losses (such losses are small if we move the charges at speeds
small compared to the speed of light). This is a totally reversible process if we neglect
such losses. That is, the amount of energy the agents put into creating the magnetic field
is exactly returned to the agents as the field is destroyed.

There is one final point to be made. Whenever electromagnetic energy is being created,
an electric charge is moving (or being moved) against an electric field (¢v-E <0).
Whenever electromagnetic energy is being destroyed, an electric charge is moving (or
being moved) along an electric field (¢v-E>0). This is the same rule we saw above
when we were creating and destroying electric energy above.

11.4 RL Circuits
11.4.1 Self-Inductance and the Faraday’s Law
The addition of time-changing magnetic fields to simple circuits means that the closed

line integral of the electric field around a circuit is no longer zero (Chapter 10.3).
Instead, we have, for any open surface
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gSF:-d§:—H31§-dA. (11.4.1)

Any circuit in which the current changes with time will have time-changing magnetic
fields, and therefore associated induced eclectric fields, which are due to the time
changing currents, not to the time changing magnetic field (association is not causation).
How do we solve simple circuits taking such effects into account? We discuss here a
consistent way to understand the consequences of introducing time-changing magnetic
fields into circuit theory--that is, self-inductance.

As soon as we introduce time-changing currents, and thus time changing magnetic fields,
the electric potential difference between two points in our circuit is no longer well
defined. When the line integral of the electric field around a closed loop is no longer
zero, the potential difference between any two points a and b, is no longer independent
of the path used to get from a to b. That is, the electric field is no longer an electrostatic
(conservative) field, and the electric potential is no longer an appropriate concept (that is,
E can no longer be written as the negative gradient of a scalar potential). However, we
can still write down in a straightforward fashion the differential equation for the current
1(t) that determines the time-behavior of the current in the circuit.

Figure 11.4.1 One-loop inductor circuit

To show how to do this, consider the circuit shown in Figure 11.4.1. We have a battery, a
resistor, a switch § that is closed at =0, and a “one-loop inductor.” It will become
clear what the consequences of this “inductance” are as we proceed. For ¢> 0, current is
in the direction shown (from the positive terminal of the battery to the negative, as usual).
What is the equation that governs the behavior of our current /(¢) for t >07?

To investigate this, apply Faraday's law to the open surface bounded by our circuit, where
we take dA =dAh pointing out of the plane of the Figure 11.4.1, and ds is
counterclockwise. First, we would like to evaluate the left-hand-side of Eq. (11.4.1), the
integral of the electric field around this circuit. There is an electric field in the battery,
directed from the positive terminal to the negative terminal, and when we go through the
battery in the direction of ds that we have chosen, we are moving against that electric
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field, so the contribution of the battery to our integral is negative and equal to the
negative of the emf provided by the battery,

battery

Then, there is an electric field in the resistor, in the direction of the current, so when we
move through the resistor in that direction, the contribution to our integral is positive,

j E-ds=1IR .

external
circuit

What about when we move through our one-loop inductor? There is no electric field in
this loop if the resistance of the wire making up the loop is zero. Thus, going around the
closed loop counterclockwise in the direction of the current, we have

$E-ds=—e+IR. (11.4.2)

What is the right-hand-side of Eq. (11.4.1)? Because we have assumed in this section that
the circuit is not moving, we can take the partial with respect to time outside of the
surface integral and then we simply have the time derivative the magnetic flux through
the loop. What is the magnetic flux through the open surface? First of all, we arrange the
geometry so that the part of the circuit that includes the battery, the switch, and the
resistor makes only a small contribution to @, as compared to the (much larger in area)

part of the open surface that constitutes our “one-loop inductor”. Second, we know that
the sign of the magnetic flux is positive in that part of the surface, because current in the
counterclockwise direction will produce a magnetic field B pointing out of the plane of
Figure 11.4.1, which is the same direction we have assumed for dA , so that B-dA is
positive. Note that our magnetic field here is the se/f-magnetic field—that is the magnetic
field produced by the current in the circuit, and not by currents external to this circuit.

We also know that at any point in space, B is proportional to the current /, since it can be
computed from the Biot-Savart Law, that is,

w 1(t) § ds' x (F—¥)
= e

You may immediately object that the Biot-Savart Law is only good in time-independent
situations, but in fact, as long as the current is varying on time scales 7 long compared to
the speed of light travel time across the circuit and we are within a distance c7 of the
currents, then (11.4.3) is an excellent approximation to the time dependent magnet field.
If we look at (11.4.3), although for a general point in space it involves a very complicated

B(F,1) = (11.4.3)
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integral over the circuit, it is clear that B(F,7) is everywhere proportional to 7(f). That

is, if we double the current, B at any point in space will also double. It then follows that
the magnetic flux itself must be proportional to 7, because it is the surface integral of B,
and B is everywhere proportional to /. That is,

®,()= [ B(E.0) ida= | “o“”gs P e
S(1) s ‘ F r’ )
(11.4.4)
u, d$x(F-¥)|
=10 [{ed—— L faa.
! nd (F-%)

Therefore we can define the self-inductance L by

@, (t)= LI(1) (11.4.5)
where

L= j 45;:7) ‘fida. (11.4.6)

So the magnetic flux is a constant L times the current. Note that L is a constant in the
sense that it stays the same as long as we do not change the geometry of the circuit. If we
change the geometry of the circuit (for example we halve the radius of the circle in our
Figure 11.4.1), we will change L, but for a given geometry, L does not change. Even
though it may be terrifically difficult to do the integrals in Eq. (11.4.6), once we have
done it for a given circuit geometry we know L, and L is a constant for that geometry.
The quantity L is called the self-inductance of the circuit, or simply the inductance.

From the definition in (11.4.6), you can show that the dimensions of L are u, times a
length.

Regardless of how hard or easy it is to compute L, it is a constant for a given circuit
geometry and now we can write down the equation that governs the time evolution of 7.

If ®,(¢)=LI(t),then d®,(¢)/dt= LdI(t)/dt,and Eq. (11.4.1) becomes

e+ ir=-1 (11.4.7)
dt

If we divide Eq. (11.4.7) by L and rearrange terms, we find that the equation that
determines the time dependence of [ is
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I R
d—+—]=

£
—. 11.4.8
dt L L ( )

We shall explore the solution to this equation in Example 11.6.1.
11.4.2 Kirchhoff's Loop Rule Modified for Inductors: a Warning

We can write the governing equation for /() from above as

ZAVI.:e—[R—L%:O (11.4.9)

where we have now cast it in a form that "looks like" a version of Kirchhoff's Second
Law, a rule that is often quoted in elementary electromagnetism texts.  Kirchhoff's
Second Law states that the sum of the potential drops around a circuit is zero. In a circuit
with no inductance, this is just a statement that the line integral of the electric field
around the circuit is zero, which is certainly true if there is no time variation. However,
in circuits with currents that vary in time, this "Law" is no longer true.

Unfortunately, many elementary texts choose to approach circuits with inductance by
preserving "Kirchhoff's Second Law", or the loop theorem, by specifying that if the
inductor is traversed in the direction of the current, the "potential drop" across an inductor
is —LdI(t)/ dt. Use of this formalism will give the correct equations. However, the

continued use of Kirchhoff's Second Law with inductors is misleading at best, for the
following reasons.

The continued use of Kirchhoff's Second Law in this way gives the right equations, but it
confuses the physics. In particular, saying that there is a "potential drop" across the
inductor of —LdI(¢)/ dt implies that there is an electric field in the inductor such that the

integral of E through the inductor is equal to —LdI(¢)/ dt. This is not always, or even
usually, true. For example, suppose in our "one-loop" inductor (Figure 11.4.1) that the
wire making up the loop has negligible resistance compared to the resistance R. The
integral of E through our "one-loop" inductor above is then very small, NOT
—LdI(t)/dt. Why is it very small? Well, to repeat our assertion above

For a single loop circuit, the current / is to an good approximation
the same in all parts of the circuit

This is just as valid in a circuit with inductance. Again, although the current may
start out at £ =0 unequal in different parts of the circuit, those inequalities imply that
charge is piling up somewhere. The accumulating charge at the pile-up will quickly
produce an electric field, and this electric field is always in the sense so as to smooth out
the inequalities in the current. In this particular case, if the conductivity of the wires
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making up our one-loop inductor is very large, then there will be a very small electric
field in those wires, because it takes only a small electric field to drive any current you
need. The amount of current needed is determined in part by the larger resistance in
other parts of the circuit, and it is the charge accumulation at the ends of those low
conductivity resistors that cancel out the field in the inductor and enhance it in the
resistor, maintaining a constant current in the circuit.

One final point may confuse the issue even further. If you have ever put the probes of a
voltmeter across the terminals of an inductor (with very small resistance) in a circuit,
what you measured on the meter of the voltmeter was a "voltage drop" of —LdI(t)/ dt.

But that is not because there is an electric field in the inductor! It is because putting the
voltmeter in the circuit will result in a time changing magnetic flux through the voltmeter
circuit, consisting of the inductor, the voltmeter leads, and the large internal resistor in
the voltmeter. A current will flow in the voltmeter circuit because there will be an
electric field in the large internal resistance of the voltmeter, with a potential drop across
that resistor of —LdI(¢t)/ dt, by Faraday's Law applied to the voltmeter circuit, and that

is what the voltmeter will read. The voltmeter as usual gives you a measure of the
potential drop across its own internal resistance, but this is not a measure of the potential
drop across the inductor. It is a measure of the time rate of change of magnetic flux in
the voltmeter circuit! As before, there is only a very small electric field in the inductor if
it has a very small resistance compared to other resistances in the circuit.

11.4.3 Example Voltmeter Readings with Time Changing Magnetic Fields

We can think of a voltmeter as a device that registers the line integral JE -ds along a

path from the clip of its (+) lead to the clip of its (-) lead. Part of the path lies inside the
voltmeter itself. The path may also be part of a loop, which is completed by some
external path from the (-) clip to the (+) clip. With that in mind, consider the arrangement
in the Figure 11.4.2.

Figure 11.4.2 Two voltmeters and a time changing magnetic field inside a solenoid
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The solenoid is so long that its external magnetic field is negligible. Its cross section is
20 cm’in area, and the field inside is to the right and increasing at the rate of 107 T-s™ .
Two identical voltmeters are connected as shown to points A and C on the loop, which
encloses the solenoid and contains the two 50-ohm resistors. The voltmeters are capable
of reading microvolts and have high internal resistance. What will each voltmeter read?

Make sure you answer is consistent, from every point of view, with Faraday’s Law (Eq.
10.3.2).

Solution: Consider the loop containing resistors 1 and 2 with the solenoid passing
through it. Choose A in the direction opposite the magnetic field, then the magnetic flux
is B- A =—BA. The change in the magnetic flux and hence the emf through the loop is
given by

dd
e=— dtB :+§A:(10‘2 T-s')20%x10* m*)=2x10"T -m*>-s' =20 uV.

Therefore the current in the loop is

L O
2R 100Q

Because the emf is positive, the current is clockwise when looking from right to left in
Figure 11.4.2.

Now let’s consider the loop that includes resistor 1 and voltmeter 1 that does not enclose
magnetic flux. Voltmeter 1 measures the line integral inside the voltmeter from the
positive terminal to the negative terminal, hence the meter measures

inside 1
If we complete the path from the negative terminal through resistor 1 to the positive
terminal then,

j E-ds=IR =(2 uA)50Q)=10 uV.

outside 1

Because there is no changing magnetic flux through this loop, Faraday’s Law is

I E-ds+ j E-ds=0.
;lside 1 ;utside 1

Therefore
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AV + IR =0.
Hence voltmeter 1 reads

AV, ==IR =—(2 uA)(50Q)=-10 uV .
Note that the higher potential end is at the negative terminal of voltmeter 1.

Now consider Loop 2 that involves resistor 1, voltmeter 2 and encloses changing
magnetic flux. Faraday’s Law is

The changing magnetic flux is

_4

— II E-dA:+%A:20uV

loop 2
Voltmeter 2 measures

inside 2

We again complete the path from the negative terminal through resistor 1 to the positive
terminal, with

N
[E-ds=IR,.
;xt 1
Therefore Faraday’s Law becomes
do
AV, + IR =——2.
dt

Hence

dd
AV, =-IR - dtB =—10 uV+20 4V =10 uV.

So the higher potential is the positive terminal of voltmeter 2. Both voltmeters are clipped
to the same points and the measured voltage difference that have opposite signs,

AV, ==AV .

1 2
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11.5 How can the Electric Field in an Inductor be Zero?

Students are always confused about the electric field in inductors, in part because of the
kinds of problems they have seen. What has changed in our circuit above to make the
electric field zero in the wires of the (resistanceless) inductor zero, even though there is a
time changing magnetic flux through it? This is a very subtle point and a source of
endless confusion, so let’s look at it very carefully.

Your intuition that there should be an electric field in the wires of an inductor is
based on doing problems like that shown in Figure 11.5.1(a). We have a loop of wire of
radius a and total resistance R immersed in an external magnetic field that is out of the
plane of the figure and changing in time as shown in Figure 11.5.1(b). In considering this
circuit, unlike in our “one-loop” circuit above, we neglect the magnetic field due to the
currents in the wire itself, assuming that the external field is much bigger than the self-
field. The conclusions we arrive at here can be applied to the self-inductance case as
well.

(a) (b)

Figure 11.5.1 (a) Conducting loop in a changing magnetic field. (b) Plot of
external magnetic field vs. time.

We calculated the emf in Example 10.3.1 associated with this example and found that

dB_ |
£=-—sna, (11.5.1)

and an induced electric field right at the loop given by

E 1ﬂgt$ <R (11.5.2)
=———q , 14 . 0N
2 dt

This “induced” electric field is azimuthal and uniformly distributed around the loop as
long as the resistance in the loop is uniform.

11-21



Thus if the resistance is distributed uniformly around the wire loop, we get a uniform
induced electric field in the loop, circulating clockwise for the external magnetic field
increasing in time (Eq. (11.5.2)). This electric field causes a current, and the current is
directed clockwise in the same sense as the electric field. The total current in the loop
will be the total “potential drop” around the loop divided by its resistance R,

le
R

1 dB_
— et g (11.5.3)
R dt

I=

But what happens if we don’t distribute the resistance uniformly around the wire loop?
For example, let us make the left half of our loop out of wire with resistance R, and the

right half of the loop out of wire with resistance R,, with R= R + R, so that we have

the same total resistance as before (Figure 11.5.3). Let us further assume that R <R, .
How is the electric field distributed around the loop now?

Figure 11.5.2 A loop of wire with Figure 11.5.3 The electric field
resistance R in an external field out of in the case of unequal resistances
the plane of figure. in the loop.

First of all, the electromotive force around the loop (Eq. (11.5.1)) is the same, as
is the resistance, so that the current / has to be the same as in Eq. (11.5.3). Moreover it is
the same on both sides of the loop by charge conservation. But the electric field in the

left half of the loop fll must now be different from the electric field in the right half of
the loop Ez. This is so because the line integral of the electric field on the left side is
mak, , and from Ohm’s Law in macroscopic form, this must be equal to /R, . Similarly,
mwak, = IR,. Thus

E

R
EIZFIZ>E1 <E, since R <R, . (11.5.4)

2 2

This makes sense. We get the same current on both sides, even though the resistances are
different, and we do this by adjusting the electric field on the side with the smaller
resistance to be smaller. Because the resistance is also smaller, we produce the same
current as on the opposing side, with this smaller electric field.
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But what happened to our uniform electric field. Well there are two ways to produce
electric fields—one from time changing currents and their associated time changing
magnet fields, and the other from electric charges. Nature accomplishes the reduction of

fll compared to ]_7:2 by charging at the junctions separating the two wire segments
(Figure 14.4.5), positive on top and negative on bottom.

The total electric field is the sum of the “induced” electric field and the electric field
associated with the charges, as shown in the Figure 14.5.3. It is clear that the addition of
these two contributions to the electric field will reduce the total electric field on the left

(side 1) and enhance it on the right (side 2). The field fll will always be clockwise, but it

can be made arbitrarily small by making R << R, .

Thus we see that we can make a non-uniform electric field in an inductor by using non-
uniform resistance, even though our intuition tells us (correctly) that the “induced”
electric field should be uniform at a given radius. All that Faraday’s Law tells us is that
the line integral of the electric field around a closed loop is equal to the negative of the
time rate of change of the magnet flux through the enclosed surface. It does not tell us at
what locations the electric field is non-zero around the loop, and it may be non-zero (or
zero!) in unexpected places. The field in the wire making up the “one-loop” inductor we
considered above is zero (or least very small) for exactly the kinds of reasons we have
been discussing here.

11.6 Modified Kirchoff’s Law (Misleading, see Section 11.4.2)

We now give a modified version of Kirchoff’s Law which includes inductors, but you
must always be aware that this modified version is wrong (see Section 11.4.2). However
it is a useful mnemonic. The modified rule for inductors may be obtained as follows: The
polarity of the self-induced emf is such as to oppose the change in current, in accord with
Lenz’s law. If the rate of change of current is positive, as shown in Figure 11.6.1(a), the

self-induced emf €, sets up an induced current /, , moving in the opposite direction of

the current / to oppose such an increase. The inductor could be replaced by an emf
|g, |=L|dl/dt|=+L(dl /dt) with the polarity shown in Figure 11.6.1(a). On the other

hand, if dI / dt <0, as shown in Figure 11.6.1(b), the induced current /, , set up by the

self-induced emf &, flows in the same direction as I to oppose such a decrease.
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(@) (b)

Figure 11.6.1 Modified Kirchhoff’s rule for inductors (a) with increasing current, and (b)
with decreasing current. See Section 11.4.2 for cautions about the use of this modified
rule.

The modified rule for inductors may be obtained as follows: The polarity of the self-
induced emf is such as to oppose the change in current, in accord with Lenz’s law. If the
rate of change of current is positive, as shown in Figure 11.6.1(a), the self-induced emf

€, sets up an induced current /, . moving in the opposite direction of the current 7 to

oppose such an increase. The inductor could be replaced by an emf
|g, |=L|dl/dt|=+L(dl / dt) with the polarity shown in Figure 11.6.1(a). On the other

hand, if dI / dt <0, as shown in Figure 11.6.1(b), the induced current /, , set up by the

self-induced emf &, flows in the same direction as I to oppose such a decrease.

We see that whether the rate of change of current in increasing (dl / dt > 0) or decreasing
(dl / dt <0), in both cases, the change in potential when moving from a to b along the

direction of the current / is V, —V = —L(dI / dt). Thus, we have

Kirchhoff's Loop Rule Modified for Inductors (Misleading, see Section 11.4.2):

If an inductor is traversed in the direction of the current, the “potential change” is
—L(dI / dt). On the other hand, if the inductor is traversed in the direction opposite of the

current, the “potential change” is +L(d[ / dt).

Use of this modified Kirchhoff’s rule will give the correct equations for circuit problems
that contain inductors. However, keep in mind that it is misleading at best, and at some
level wrong in terms of the physics. Again, we emphasize that Kirchhoff's loop rule was
originally based on the fact that the line integral of E around a closed loop was zero.
With time-changing magnetic fields, this is no longer so, and thus the sum of the
“potential drops” around the circuit, if we take that to mean the negative of the closed
loop integral of E, is no longer zero — in fact it is +L(dI / dt).
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11.6.1 Rising Current

Figure 11.6.2 (a) RL Circuit with rising current. (b) Equivalent circuit using the modified
Kirchhoff’s loop rule.

Consider the RL circuit shown in Figure 11.6.2. At ¢#=0 the switch is closed. We find
that the current does not rise immediately to its maximum value €/ R . This is due to the
presence of the self-induced emf in the inductor. Using the modified Kirchhoff’s rule for
increasing current, d/ / dt >0, the RL circuit is described by the following differential
equation:

dil
e—IR—|eL|:s—IR—LE:O. (11.6.1)

Note that there is an important distinction between an inductor and a resistor. The
potential difference across a resistor depends on 7, while the potential difference across
an inductor depends on dI /dt. The self-induced emf does not oppose the current itself,
but the change of current dI / dt . Eq. (11.6.1) can be rewritten as

d
I-¢/R LI/IR’

(11.6.2)

Integrating over both sides and imposing the condition /(#=0)=0, the solution to the
differential equation is

I(t):%(l—e‘”’). (11.6.3)

This solution reduces to what we expect for large times, that is /(o) =€/ R, but it also
shows a continuous rise of the current from /(#=0)=0 initially to this final value, with a

characteristic time 7, defined by
L
2 ( )

This time constant is known as the inductive time constant. This is the effect of having a
non-zero inductance in a circuit, that is, of taking into account the “induced” electric
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fields that always appear when there are time changing B fields. This is what we
expect—the reaction of the system is to try to keep things the same, delaying the build-up
of current (or its decay, if we already have current flowing in the circuit).

Figure 11.6.3 Current in the RL circuit as a function of time

The qualitative behavior of the current as a function of time is depicted in Figure 11.6.3.
Note that after a sufficiently long time, the current reaches its equilibrium value £/ R.
The time constant T is a measure of how fast the equilibrium state is attained; the larger
the value of L, the longer it takes to build up the current. A comparison of the behavior
of current in a circuit with or without an inductor is shown in Figure 11.6.4. Similarly, the
magnitude of the self-induced emf can be obtained as

ﬂ _ —t/T

|eL|=‘—Ldt ge”, (11.6.5)

which is at a maximum when ¢ =0 and vanishes as ¢ approaches infinity. This implies
that a sufficiently long time after the switch is closed, self-induction disappears and the
inductor simply acts as a conducting wire connecting two parts of the circuit.

Figure 11.6.4 Behavior of current in a circuit with or without an inductor

To see that energy is conserved in the circuit, we multiply Eq. (11.6.1) by / and obtain
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18:12R+L1%. (11.6.6)

The left-hand side represents the rate at which the battery delivers energy to the circuit.
On the other hand, the first term on the right-hand side is the power dissipated in the
resistor in the form of heat, and the second term is the rate at which energy is stored in
the inductor. While the energy dissipated through the resistor is irrecoverable, the
magnetic energy stored in the inductor can be released later.

11.6.2 Decaying Current

Next we consider the RL circuit shown in Figure 11.6.5. Suppose the switch S, has been
closed for a long time so that the current is at its equilibrium value &£/ R . What happens
to the current when at 7 =0 switches S, is opened and S, closed?

Figure 11.6.5 (a) RL circuit with decaying current, and (b) equivalent circuit.

Applying the modified Kirchhoff’s loop rule to the right loop for decreasing current,
dl/dt<0,yields

dl
|8L|—IR:—LE—IR:O, (11.6.7)
which can be rewritten as
dl dt
—_— = (11.6.8)
I L/R

The solution to the above differential equation is
)=S¢" (11.6.9)
R b

where 7= L/ R is the same time constant as in the case of rising current. A plot of the
current as a function of time is shown in Figure 11.6.6.
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Figure 11.6.6 Decaying current in a RL circuit

11.7 LC Oscillations

Consider a LC circuit in which a capacitor is connected to an inductor, as shown in
Figure 11.7.1.

Figure 11.7.1 LC Circuit

Suppose the capacitor initially has charge O . When the switch is closed, the capacitor

begins to discharge and the electric energy is decreased. On the other hand, the current
created from the discharging process generates magnetic energy that then gets stored in
the inductor. In the absence of resistance, the total energy is transformed back and forth
between the electric energy in the capacitor and the magnetic energy in the inductor. This
phenomenon is called electromagnetic oscillation.

The total energy in the LC circuit at some instant after closing the switch is
U=U_+U —lQ—2+lle (11.7.1)
ctU =57+ 7.

The fact that U remains constant implies that
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dt di

2C 2

2
av _df19° 1,.|_ Q40 . d _, (11.7.2)
Cdr  di

Eq. (11.7.2) can be rewritten as

2
%Hig:o, (11.7.3)
t

where I =-dQ/dt (and dI / dt=—-d’Q/dt*). Notice the sign convention we have

adopted here. The negative sign implies that the current / is equal to the rate of decrease
of charge in the capacitor plate immediately after the switch has been closed. The same
equation can be obtained by applying the modified Kirchhoff’s loop rule clockwise:

0 dl_

“ o, 11.7.4
C di (11.74)

followed by our definition of current. The general solution to Eq. (11.5.3) is
O(t) = Q,cos(w it +9), (11.7.5)

where Qo is the amplitude of the charge, w+ ¢ is the phase, and ¢ is the phase

constant. The angular frequency @, is given by
0, =——. (11.7.6)

The corresponding current in the inductor is

I(t)= —62—? =w,0,sin(ot+¢) =1 sin(wt+9¢), (11.7.7)
where I, = @ Q,. From the initial conditions Q(z=0)=Q, and I(t=0)=0, the phase
constant ¢ can be determined to be ¢ =0. Thus, the solutions for the charge and the
current in our LC circuit are

O(t) = 9, cos(m,t), (11.7.8)
and
I(t) =1 sin(w,t) . (11.7.9)

The time dependence of Q(¢) and /(¢) are depicted in Figure 11.7.2.
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Figure 11.7.2 Charge and current in the LC circuit as a function of time

Using Egs. (11.7.8) and (11.7.9), we see that at any instant of time, the electric energy
and the magnetic energies are given by

o'm [ .
U, = =| = |cos“(w 1), 11.7.10
v by= (o) ( )
and
1 L
UB = Ele(t) = TOSil'lz((l)Of)
(11.7.11)
L(_ono)2 ) Qo2 )
= wr)=(—|sm(w.¢l
5 oo (@,1) Y; (@,1)
respectively. One can easily show that the total energy remains constant:
2 2 2
U=U,+U, = % cos’ ot + % sinzwoz=% (11.7.12)
2C 2C 2C

The electric and magnetic energy oscillation is illustrated in Figure 11.7.3.

Figure 11.7.3 Electric and magnetic energy oscillations

The mechanical analog of the LC oscillations is the mass-spring system, shown in
Figure 11.7.4.
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Figure 11.7.4 Mass-spring oscillations

If the mass is moving with a speed v and the spring having a spring constant k& is
displaced from its equilibrium by x, then the energy E__  of this mechanical system is

=K+U =Emv2+5kx2, (11.7.13)

where K and USp are the kinetic energy of the mass and the potential energy of the

spring, respectively. In the absence of friction, £, is constant and we obtain

2
meeh — — | —mv® +—kx

Cdtl 2 2

dE
B _d [ Lo @ i ® 0. (11.7.14)
At di

Using v=dx/dt and dv/dt=d’x/dt*, the above equation may be rewritten as

d*x

dt?

m

+hx=0. (11.7.15)

The general solution for the displacement is

x(t) = Acos(wt + ¢) (11.7.16)
where
k
W, =4|— (11.7.17)
m

is the angular frequency and A is the amplitude of the oscillations. Thus, at any instant in
time, the energy of the system may be written as

1 . 1
Emech = E mA20)§ Sll’l2 (a)()t + ¢) + 5 kA2 COS2 (a)ot + ¢)

1 . . (11.7.18)
= EkA2 [sinz(w0t+¢))+cosz(a)0t+¢)] = EkAZ
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11.8 The RLC Series Circuit

We now consider a series RLC circuit that contains a resistor, an inductor and a
capacitor, as shown in Figure 11.8.1.

Figure 11.8.1 A series RLC circuit
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LC Circuit Mass-spring System Energy

Figure 11.7.5 Energy oscillations in the LC Circuit and the mass-spring system
In Figure 11.7.5 we illustrate the energy oscillations in the LC Circuit and the mass-
spring system (harmonic oscillator).
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The capacitor is initially charged to Q,. After the switch is closed current will begin to
flow. However, unlike the LC circuit energy will be dissipated through the resistor. The
rate at which energy is dissipated is

dU

—=-I"R. (11.8.1)

dt
where the negative sign on the right-hand side implies that the total energy is decreasing.
After substituting Eq. (11.7.2) for the left-hand side of the above equation, we obtain the
following differential equation

Q49 ;U __pp (11.8.2)
cdar

Again, by our sign convention where current is equal to the rate of decrease of charge in
the capacitor plates, / =—dQ/dt. Dividing both sides by /, the above equation can be

rewritten as
d’ d
L_Q+R_Q+g: 0 .

11.8.3
dt? dt C ( )

For small R (the underdamped case, see Appendix 1), one can readily verify that a
solution to the above equation is

O()=Q,e " cos(w't +¢), (11.8.4)
where the damping factor is
R
= 11.8.5
4 2L ( )

0'=\o -y . (11.8.6)

The constants O, and ¢ are real quantities to be determined from the initial conditions.
In the limit where the resistance vanishes, R=0, we recover the undamped natural
angular frequency o, =1/ \/E . There are three possible scenarios and the details are
discussed in Appendix 1 (Section 11.10).

The mechanical analog of the series RLC circuit is the damped harmonic oscillator
system. The equation of motion for this system is given by

2
Ly (11.8.7)
e dt
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where the velocity-dependent term accounts for the non-conservative, dissipative force

Feop®
dt

(11.8.8)

with b being the damping coefficient. The correspondence between the RLC circuit and
the mechanical system is summarized in Table 11.8.1. (Note that the sign of the current

I depends on the physical situation under consideration.)

RLC Circuit Damped Harmonic Oscillator

Variable s 0 x
Variable ds/dt +7 v
Coefficient of s 1/C k
Coefticient of ds/dt R b
Coefficient of d’s/df’ L m

LI*2 mv*/2
Fnerey logvle kx*/2

Table 11.8.1 Correspondence between the RLC circuit and the mass-spring system

11.9 Summary

M12 I 21 I

1 2

— N,®, =M = N®, —

Using Faraday’s law of induction, the mutual inductance of two coils is given by

M.

* The induced emf in coil 2 due to the change in current in coil 1 is given by

dI,
g,=-M—L.
dt

¢ The self-inductance of a coil with N turns is

_No,
I

L

where @, is the magnetic flux through one turn of the coil.
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The self-induced emf responding to a change in current inside a coil current is

dl
EL Z—LE.

The inductance of a solenoid with N turns, cross sectional area 4 and length / is

U,N>4
T

L=

If a battery, supplying an emf &, is connected to an inductor and a resistor in
series at time ¢ = 0, then the current in this RL circuit as a function of time is

1(t) = %(1— &',

where 7= L/ R is the time constant of the circuit. If the battery is removed in the
RL circuit, the current will decay as

£
I(t)=—e"".
==
The magnetic energy stored in an inductor with current / passing through is
B

U :lLIZ.
2

The magnetic energy density at a point with magnetic field strength B is

B2
= 2u0 .

Uy

The differential equation for an oscillating LC circuit is

sz
dt?

+w,0=0,

where @, = is the angular frequency of oscillation. The charge on the

1
VLC
capacitor as a function of time is given by

O(t) = Q, cos(m,t + §)
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and the current in the circuit is

I(t)= —ij—? =+,0,sin(w + @) .

* The total energy inan LC circuit is, using I, = 0,0, ,

2 L[Z
U=UE+UB=2Q—gcoszw0t+7°sin2wot:%.

* The differential equation for an RLC circuit is
d’Q 4y

W-ﬁ-z’}/z-i-ng:O,

and ¥ = R/ 2L. In the underdamped case, the charge on the

here @ 1
W. =

" JLc
capacitor as a function of time is

O(t)=Q,e " cos(w't +¢),

_ 2 2
where @' = (o, -y .

11.10 Appendix 1: General Solutions for the RLC Series Circuit

In Section 11.8, we have shown that the RLC circuit is characterized by the following
differential equation

2
Ld—Q+Rd—Q+g:0 (11.10.1)
dr’ dt C

whose solutions is given by
0(t)=0Q,e " cos(w't+¢) (11.10.2)

where the damping factor is

R
= 11.10.3

r=37 ( )

and the angular frequency of the damped oscillations is

0'=\o] -y . (11.10.4)
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There are three possible scenarios, depending on the relative values of y and @, .
Case 1: Underdamping

When @, >y , or equivalently, @' is real and positive, the system is said to be
underdamped. This is the case when the resistance is small. Charge oscillates (the cosine
function) with exponentially decaying amplitude O,e””". However, the frequency of this
damped oscillation is less than the undamped oscillation, @'<®,. The qualitative
behavior of the charge on the capacitor as a function of time is shown in Figure 11.10.1.

Figure 11.10.1 Underdamped oscillations

As an example, suppose the initial condition is Q(#=0)=Q, . The phase constant is then
$=0, and

O(t)=0e " cos(w't). (11.10.5)
The corresponding current is
— dQ _ [y 22 IS ' ' '
Hﬂ——;?—gwe [sin(@'t)+(y / @) cos(w')]. (11.10.6)

For small R, the above expression may be approximated as

O .
I(t)=——=2=¢"sin(w't+J) (11.10.7)
NLC
where
5=mn{lJ. (11.10.8)
w

The derivation is left to the readers as an exercise.
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Case 2: Overdamping

In the overdamped case, @, <y , implying that @' is imaginary. There is no oscillation in

this case. By writing @'=if3, where f=/y’ —(1)3 , one may show that the most general

solution can be written as
Q([) = Qle_(7+ﬁ)’ + Qze_(y_ﬁ)l , (1 1 109)

where the constants O, and Q, can be determined from the initial conditions.

Figure 11.10.2 Overdamping and critical damping
Case 3: Critical damping

When the system is critically damped, @ =y, @'=0. Again there is no oscillation. The
general solution is

0)=(Q,+0,ne ™, (11.10.10)

where Q, and Q, are constants which can be determined from the initial conditions. In

this case one may show that the energy of the system decays most rapidly with time. The
qualitative behavior of Q(¢) in overdamping and critical damping is depicted in Figure

11.10.2.

11.10.1 Quality Factor

When the resistance is small, the system is underdamped, and the charge oscillates with
decaying amplitude Qe . The “quality” of this underdamped oscillation is measured by

the so-called “quality factor,” Qqual (not to be confused with charge.) The larger the value

of Qqual , the less the damping and the higher the quality. Mathematically, Qqu is defined

al
as
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0 o energy stored :w‘L (11.10.11)
el average power dissipated |dU / dt |

Using Eq. (11.10.2) the electric energy stored in the capacitor is

o 0w 9’

= e " cos’ ('t + ¢) . 11.10.12
Ry Ry~ ( ®) ( )

To obtain the magnetic energy, we approximate the current as

I(t)= —% = Qoa)'e’”[sin(a)'t+¢)+(%jcos(a)'t+¢)}
=~Qw'e " sin(w't + ¢) (11.10.13)
= %e” sin(w't + @)

assuming that @'>7y and ®" za)é =1/LC. Thus, the magnetic energy stored in the
inductor is given by

1 LO) . ’ .
U, = ELIZ ~ %w'z e sin’ ('t +¢) = g—oce—”’ sin’(w't+¢). (11.10.14)

Adding up the two terms, the total energy of the system is
0, 0, 0,
U=U,_+U,~=2¢ " cos’(0't+¢)+—2e"sin*(w't+¢)=| == | .(11.10.15
R ialys ( ) Y ( ) 2C ( )

Differentiating the expression with respect to ¢ then yields the rate of change of energy

2
(iz_lt]:_zy[g_oce_m):_zw' (11.10.16)

Thus, the quality factor becomes

U 'L
0 _0r (11.10.17)

:a)'—:
Qo \dU /dt| 2y

As expected, the smaller the value of R, the greater the value of Qqual , and therefore the

higher the quality of oscillation.

11-42



11.11 Appendix 2: Stresses Transmitted by Magnetic Fields

In Chapter 9, we showed that the magnetic field due to an infinite sheet in the xy-plane
carrying a surface current K = K iis given by

K.
_H j z>0
2

w<]
Il

(11.11.1)

K.
BAL <o

Now consider two sheets separated by a distance d carrying surface currents in the
opposite directions, as shown in Figure 11.11.1.

Figure 11.11.1 Magnetic field due to two sheets carrying surface current in the opposite
directions

Using the superposition principle, we may show that the magnetic field is non-vanishing
only in the region between the two sheets, and is given by

B=uKj -d/2<z<d/2. (11.11.2)
Using Eq. (11.3.8) the magnetic energy stored in this system is

2 K 2
Ug= & (Ad)=M(Ad)=&K2(Ad), (11.11.3)
2u, 2u, 2

where A is the area of the plate. The corresponding magnetic energy density is
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U
ZsHoge (11.11.4)

T4 2

Now consider a small current-carrying element /ds = (K Ay)Axi on the upper plate

(Recall that K has dimensions of current/length). The force experienced by this element
due to the magnetic field of the lower sheet is

dF, = 1d3 xB, = (KAy Axi)x (%KJ] - %Kz(AxAy)lE . (L1L5)

The force points in the +k direction and therefore is repulsive. This is expected since the
currents flow in opposite directions. Since dF,, is proportional to the area of the current

—

element, we introduce force per unit area, f, , and write

f =K xB =2Kkk=uk, (11.11.6)

21 2 B

using Eq. (11.11.4). The magnitude of the force per unit area, f, , is exactly equal to the

magnetic energy density u,. Physically, f,, may be interpreted as the magnetic pressure

B2

:P: = —
f‘21 uB 2u0

(11.11.7)

The repulsive force experienced by the sheets is shown in Figure 11.11.2.

Figure 11.11.2 Magnetic pressure exerted on (a) the upper plate, and (b) the lower plate

11.12 Problem-Solving Strategies
11.12.1 Calculating Self-Inductance
The self-inductance L of an inductor can be calculated using the following steps.

1. Assume a steady current / for the inductor, which may be a conducting loop, a
solenoid, a toroid, or coaxial cables.
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2. Choose an appropriate cross section S and compute the magnetic flux through S
using
®, = [[B-dA.
N

If the surface were bounded by N turns of wires, then the total magnetic flux
through the surface would be N®,.

3. The inductance may be obtained as

L= £,
1

11.12.2 Circuits containing inductors

Three types of single-loop circuits were examined in this chapter: RL, LC and RLC. To
set up the differential equation for a circuit, we apply the Kirchhoff’s loop and junction
rules, as we did in Chapter 7 for the RC circuits. For circuits that contain inductors, the
corresponding modified Kirchhoff’s rule is schematically shown below.

Note that the “potential difference” across the inductor is proportional to dI / dt, the rate
of change of current. The situation simplifies if we are only interested in the long-term
behavior of the circuit where the currents have reached their steady state and dI /dt =0.
In this limit, the inductor acts as a short circuit and can simply be replaced by an ideal
wire.

11.13 Solved Problems

11.13.1 Energy stored in a toroid

A toroid consists of N turns and has a rectangular cross section, with inner radius a,
outer radius b and height & (see Figure 11.2.3). Find the total magnetic energy stored in
the toroid.

Solution: In Example 11.3 we showed that the self-inductance of a toroid is
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L= 8
1 21w

N®, p Nh ( bj
= In .
a

Thus, the magnetic energy stored in the toroid is simply

N’I*h
UB:%LIZ:“O4—1n(éj. (11.13.1)
T a

Alternatively, the energy may be interpreted as being stored in the magnetic field. For a
toroid, the magnetic field is (see Chapter 9)

and the corresponding magnetic energy density is

18> u NI
0

uB
The total energy stored in the magnetic field can be found by integrating over the volume.

We choose the differential volume element to be a cylinder with radius r, width dr and
height &, so that dV =2nrhdr . This leads to

o[ u N*I? uUNIh (b
ngjqusza{ o )27trhdr:°Tln ~|. (11.13.3)

Thus, both methods yield the same result.

11.13.2 Magnetic Energy Density

A wire of nonmagnetic material with radius R and length [/ carries a current / that is
uniformly distributed over its cross-section. What is the magnetic energy inside the wire?

Solution: Applying Ampere’s law, the magnetic field at distance » < R can be obtained
as

B(znr)zqu(nr2)=uo(ﬁ;2j(m2). (11.13.4)

The magnitude of the magnetic field is
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I Ir
B= AR (11.13.5)

Because the magnetic energy density (energy per unit volume) is given by

B2
2u,

I/IB:

(11.13.6)

The magnetic energy stored in the system becomes

I’ I’ R r’l
U, j 2 27rrldr el A Y50 R L PR )
4R 0 arR'\ 4 ) 16m

11.13.3 Mutual Inductance

An infinite straight wire carrying current / is placed to the left of a rectangular loop of
wire with width w and length [/, as shown in the Figure 11.13.1. Determine the mutual
inductance of the system.

Figure 11.13.1 Rectangular loop placed near long straight current-carrying wire

Solution: To calculate the mutual inductance M , we first need to know the magnetic
flux through the rectangular loop. The magnetic field at a distance r away from the

straight wire is B =y I/ 2nr, using Ampere’s law. The total magnetic flux @, through

the loop can be obtained by summing over contributions from all differential area
clements dA = ldr,

_ - ‘LLIL s+wd}’ ‘U,Il s+w
D =|dd, =|B-dA=""— — =1 . 11.13.8
g J ? J. 21 J.S F o2 s ( )

Thus, the mutual inductance is
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® i
M= Bl 5w (11.13.9)
1 21 S

11.13.4 RL Circuit

Consider the circuit shown in Figure 11.13.2 below.

Figure 11.13.2 RL circuit
Determine the current through each resistor
(a) immediately after the switch is closed.
(b) a long time after the switch is closed.
Suppose the switch is reopened a long time after it’s been closed. What is each current
(c) immediately after it is opened?
(d) after a long time?
Solution:

(a) Immediately after the switch is closed, the current through the inductor is zero
because the self-induced emf prevents the current from rising abruptly. Therefore, 7, =0.

Since I, =1,+1,,wehave [ =1,.
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Figure 11.13.3

Applying Kirchhoff’s rules to the first loop shown in Figure 11.13.3 yields

(11.13.10)

(b) After the switch has been closed for a long time, there is no induced emf in the
inductor and the currents will be constant. Kirchhoff’s loop rule gives for the first loop

e-IR-ILR =0, (11.13.11)
and for the second loop
LR —IR =0. (11.13.12)

Combining the two equations with the junctionrule /, = I, + I, we obtain

3 (R2 + R3)£
! RR +RR +RR,

E
1= R, . (11.13.13)
RR +RR +RR,

/- R2 £
, =
RR,+RR +RR,
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(c) Immediately after the switch is opened, the current through R is zero, i.e., I, =0.
This implies that 7, + I, = 0. On the other hand, loop 2 now forms a decaying RL circuit

and I, starts to decrease. Thus,

B Rze
37 2 = :
RlR2 + RlR3 + R2R3

(11.13.14)

(d) A long time after the switch has been closed all currents will be zero. That is,
I =1 =1=0.
1 2 3

11.13.5 RL Circuit

In the circuit shown in Figure 11.13.4, suppose the circuit is initially open. At time =0
it is thrown closed. What is the current in the inductor at a later time ¢ ?

Figure 11.13.4 RL circuit

Solution: Let the currents through R, R, and L be [, I,and I, respectively, as shown
in Figure 11.13.5.

From Kirchhoff’s junction rule, we have I, =1 + /. Similarly, applying Kirchhoff’s
loop rule to the left loop yields

e—(I+1)R-1,R =0. (11.13.15)

Figure 11.13.5
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Similarly, for the outer loop, the modified Kirchhoff’s loop rule gives

e—(1+IZ)RI:L%. (11.13.16)

The two equations can be combined to yield

di L dl
LR =L— = [ =——

= . 11.13.17
dt > R, dt ( )

Substituting into Eq. (11.13.15) the expression obtained above for 7, , we have

R +R
£— 1+iﬂ Rl—Lﬂ:g—lRl— L 2 Lﬂ:o, (11.13.18)
dt R dt

2

Dividing the equation by (R + R,)/ R, leads to

dl

e-IR-L—=0, (11.13.19)
dt
where
RR Re
=12 @ g'= 2. (11.13.20)
R1+R2 R1+R2

The differential equation can be solved and the solution is given by
8' —R't/L
I(t)zﬁ(l—e ). (11.13.21)

Using the equations in (11.13.20), we have that

e eR/(R+R) &

—= =—. (11.13.22)
R' RR /(R+R) R
The current through the inductor may be rewritten as
£ : £
It =—1-e""")=—(1-e"" 11.13.23
(0)=—7( )=5 ) ( )

1 1

where 7= L/ R' is the time constant.
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11.13.6 LC Circuit

Consider the circuit shown in Figure 11.13.6. Suppose the switch that has been connected
to point a for a long time is suddenly thrownto b at t=0.

Figure 11.13.6 LC circuit
Find the following quantities:
(a) the frequency of oscillation of the LC circuit.
(b) the maximum charge that appears on the capacitor.
(¢) the maximum current in the inductor.

(d) the total energy the circuit possesses at any time .

Solution:

(a) The angular frequency of oscillation of the LC circuit is given by
@ =2rf =1/NLC . Therefore, the frequency is

(11.13.24)

1
f_27r\/i'

(b) The maximum charge stored in the capacitor before the switch is thrown to b is

0=Ce. (11.13.25)

(c) The energy stored in the capacitor before the switch is thrown is

E

U =%ng. (11.13.26)

On the other hand, the magnetic energy stored in the inductor is
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1
U :Euz. (11.13.27)

B

Thus, when the current is at its maximum, all the energy originally stored in the capacitor
is now in the inductor

1 1
EC{:‘Z =5L1§. (11.13.28)

This implies a maximum current

[ =efS . (11.13.29)

0

&‘

(d) At any time, the total energy in the circuit would be equal to the initial energy that the
capacitance stored, that is

1
U:UE+UB:EC82. (11.13.30)

11.14 Conceptual Questions

1. How would you shape a wire of fixed length to obtain the greatest and the
smallest inductance?

2. If the wire of a tightly wound solenoid is unwound and made into another tightly
wound solenoid with a diameter 3 times that of the original one, by what factor

does the inductance change?

3. What analogies can you draw between an ideal solenoid and a parallel-plate
capacitor?

4. Inthe RL circuit show in Figure 11.14.1, can the self-induced emf ever be greater
than the emf supplied by the battery?

Figure 11.14.1
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5. The magnetic energy density u, = B’ /21, may also be interpreted as the

magnetic pressure. Using the magnetic pressure concept, explain the attractive
(repulsive) force between two coils carrying currents in the same (opposite)
direction.

6. Explain why the LC oscillation continues even after the capacitor has been
completely discharged.

7. Explain physically why the time constant 7 =L/ R in a RL circuit is
proportional to L and inversely proportional to R.

11.15 Additional Problems

11.15.1 Solenoid

A solenoid with a length of 30 cm, a radius of 1.0 cm and 500 turns carries a steady
current / =2.0 A.

(a) What is the magnetic field at the center of the solenoid along the axis of symmetry?

(b) Find the magnetic flux through the solenoid, assuming the magnetic field to be
uniform.

(c) What is the self-inductance of the solenoid?

(d) What is the induced emf in the solenoid if the rate of change of current is
dl / dt =100 A/s?

11.15.2 Self-Inductance

Suppose you try to wind a wire of length d and radius a into an inductor, which has the
shape of a cylinder with a circular cross section of radius ». The windings are tight
without wires overlapping. Show that the self-inductance of this inductor is

rd

L=‘UOE.

11.15.3 Coupled Inductors

(a) If two inductors with inductances L, and L, are connected in series, show that the

equivalent inductance is
L,=L+L £2M,
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where M is their mutual inductance. How is the sign chosen for M ? Under what
condition can M be ignored?

(b) If the inductors are instead connected in parallel, show that, if their mutual inductance
can be ignored, the equivalent inductance is given by

How would you take the effect of M into consideration?

11.15.4 RL Circuit

The RL circuit shown in Figure 11.15.1 contains a resistor R and an inductance L in
series with a battery of emf g, . The switch §' is initially closed. At =0, the switch § is

opened, so that an additional very large resistance R, (with R, >> R ) is now in series
with the other elements.

Figure 11.15.1 RL circuit

(a) If the switch has been closed for a long time before 1 =0, what is the steady current
1, in the circuit?

(b) While this current / is flowing, at time #=0, the switch § is opened. Write the
differential equation for /(z) that describes the behavior of the circuit at times # >0.
Solve this equation (by integration) for /(#) under the approximation that £ =0.

(Assume that the battery emf is negligible compared to the total emf around the circuit
for times just after the switch is opened.) Express your answer in terms of the initial

current / ,and R, R, ,and L.
(c) Using your results from (b), find the value of the total emf around the circuit (which

from Faraday's law is —Ld[ / dt) just after the switch is opened. Is your assumption in
(b) that &, could be ignored for times just after the switch is opened valid?
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(d) What is the magnitude of the potential drop across the resistor R, at times ¢ >0, just
after the switch is opened? Express your answers in terms of €, R, and R,. How does
the potential drop across R, just after =0 compare to the battery emf g , if
R,=100R?

11.15.5 RL Circuit

In the circuit shown in Figure 11.15.2, e=100 V, R =10 Q, R =20 Q, R =30 Q,

and the inductance L in the right loop of the circuit is 2.0 H. The inductance in the left
loop of the circuit is zero.

Figure 11.15.2 RL circuit

(a) Find 7, and I, immediately after switch §' is closed.

(b) Find / and I, along time later. What is the energy stored in the inductor a long time
later?

(c) A long, long time later, switch S is opened again. Find /7, and I, immediately after

switch S is opened again.

(d) Find 7, and I, along time after switch S is opened. How much energy is dissipated

in resistors R, and R, between the time immediately after switch S is opened again, and
a long time after that?

(e) Give a crude estimate of what “a long time” is in this problem.
11.15.6 Inductance of a Solenoid With and Without Iron Core

(a) A long solenoid consists of N turns of wire, has length /, and cross-sectional area
A . Show that the self-inductance can be written as L = u N *A /1. Note that L increases

as N’, and has dimensions of U, times a length (as must always be true).
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(b) A solenoid has a length of 126 cm and a diameter of 5.45 cm, with 1870 windings.
What is its inductance if its interior is vacuum?

(c) If we now fill the interior with iron with an effective permeability constant x;,;, = 968,
what is its inductance?

(d) Suppose we connect this iron core inductor up in series with a battery and resistor,

and that the total resistance in the circuit, including that of the battery and inductor, is
10 Q. How long does it take after the circuit is established for the current to reach 50%

of its final value? [Ans. (b) 8.1 mH; (c) 7.88 H; (d) 0.55 s].

11.15.7 RLC Circuit

A RLC circuit with battery is set up as shown in Figure 11.15.3. There is no current
flowing in the circuit until time 7= 0, when the switch S, is closed.

Figure 11.15.3

(a) What is the current / in the circuit at a time ¢ > 0 after the switch S, is closed?

(b) What is the current [ in the circuit a very long time (¢ >> L/ R) after the switch §,
is closed?

(c) How much energy is stored in the magnetic field of the solenoid a very long time
(t>> L/ R) after the switch is closed?

For the next two questions, assume that a very long time (¢ >> L/R) after the switch S,
was closed, the voltage source is disconnected from the circuit by opening the switch S,

and that the solenoid is simultaneously connected to a capacitor by closing the switch S, .
Assume there is negligible resistance in this new circuit.
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Figure 11.15.4

(d) What is the maximum amount of charge that will appear on the capacitor, in terms of
the quantities given?

(e) How long will it take for the capacitor to first reach a maximal charge after the switch
S, has been closed?

11.15.8 Spinning Cylinder

Two concentric, conducting cylindrical shells are charged up by moving +Q from the
outer to the inner conductor, so that the inner conductor has a charge of +Q spread
uniformly over its area, and the outer conductor is left with —Q uniformly distributed.

The radius of the inner conductor is a; the radius of the outer conductor is b; the length
of both is /; and you may assume that / >>a and />>b.

(a) What is the electric field for r <a, a<r<b, and r>b? Give both magnitude and
direction.

(b) What is the total amount of energy in the electric field? (Hint: you may use a variety
of ways to calculate this, such as using the energy density, or the capacitance, or the
potential as a function of Q. It never hurts to check by doing it two different ways.)

(c) If the cylinders are now both spun counterclockwise (looking down the z-axis) at the
same angular velocity @ (so that the period of revolution is 7 =27 / @), what is the total
current (magnitude and sign) carried by each of the cylinders? Give your answer in terms
of w and the quantities from the first paragraph, and consider a current to be positive if it
is in the same direction as @ .

(d) What is the magnetic field created when the cylinders are spinning at angular velocity
®? You should give magnitude and direction of B in each of the three regions: r < a,

a<r<b,and r>b. (Hint: it’s easiest to do this by calculating B from each cylinder
independently and then getting the net magnetic field as the vector sum.)
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(e) What is the total energy in the magnetic field when the cylinders are spinning at @ ?
11.15.9 Spinning Loop

A circular, conducting loop of radius a has resistance R and is spun about its diameter
that lies along the y- axis, perpendicular to an external, uniform magnetic field B = BK .

The angle between the normal to the loop and the magnetic field is 6, where 0 = wr .
You may ignore the self-inductance of the loop.

(a) What is the magnetic flux through the loop as a function of time?
(b) What is the emf induced around the loop as a function of time?
(c) What is the current flowing in the loop as a function of time?

(d) At an instant that the normal to the loop aligns with the x- axis, the top of the loop lies
on the +z-axis. At this moment is the current in this piece of loop in the +j or —j
direction?

(e) What is the magnitude of the new magnetic field B _, (as a function of time) created

at the center of the loop by the induced current?

(f) Estimate the self-inductance L of the loop, using approximation that the magnetic
field strength B, is uniform over the area of the loop and has the value calculated in part

(e).

(g) At what angular speed @ will the maximum induced magnetic field strength B,

equal the external field strength B (therefore thoroughly contradicting the assumption of
negligible self-inductance that went into the original calculation of B, )? Express your

answer in terms of R and L.
11.15.10 LC Circuit

Suppose at =0 the capacitor in the LC circuit is fully charged to Q,. At a later time

t=T/6, where T is the period of the LC oscillation, find the ratio of each of the
following quantities to its maximum value:

(a) charge on the capacitor,
(b) energy stored in the capacitor,
(¢) current in the inductor, and

(d) energy in the inductor.
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