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Inductance and Magnetic Energy 
 
 
11.1  Mutual Inductance 
 
Suppose two coils are placed near each other, as shown in Figure 11.1.1  
 

 
 

Figure 11.1.1 Changing current in coil 1 produces changing magnetic flux in coil 2. 
 
The first coil has   N1  turns and carries a current   I1  which gives rise to a magnetic field 

   

B1 . The second coil has   N2  turns. Because the two coils are close to each other, some of 
the magnetic field lines through coil 1 will also pass through coil 2. Let  Φ12 denote the 
magnetic flux through one turn of coil 2 due to   I1 . Now, by varying   I1  with time, there 
will be an induced emf associated with the changing magnetic flux in the second coil: 
 

 
    
ε12 = −N2

dΦ12

dt
= −

d
dt


B1 ⋅ d


A2

coil 2
∫∫ . (11.1.1) 

 
The time rate of change of magnetic flux  Φ12  in coil 2 is proportional to the time rate of 
change of the current in coil 1:  

 
  
N2

dΦ12

dt
= M12

dI1

dt
, (11.1.2) 

 
where the proportionality constant   M12  is called the mutual inductance. It can also be 
written as 

 
  
M12 =

N2Φ12

I1

. (11.1.3) 
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The SI unit for inductance is the henry [H]: 
 
  1 henry =1 H =1 T ⋅m2 /A . (11.1.4) 
 
We shall see that the mutual inductance   M12  depends only on the geometrical properties 
of the two coils such as the number of turns and the radii of the two coils. 
 
In a similar manner, suppose instead there is a current   I2  in the second coil and it is 
varying with time (Figure 11.1.2). Then the induced emf in coil 1 becomes 
 

 
    
ε21 = −N1

dΦ21

dt
= −

d
dt


B2 ⋅ d


A1

coil 1
∫∫ , (11.1.5) 

 
and a current is induced in coil 1.  

 

 
 

Figure 11.1.2 Changing current in coil 2 produces changing magnetic flux in coil 1. 
 
This changing flux in coil 1 is proportional to the changing current in coil 2, 
 

 
  
N1

dΦ21

dt
= M21

dI2

dt
, (11.1.6) 

 
where the proportionality constant   M21  is another mutual inductance and can be written 
as 

 
  
M21 =

N1Φ21

I2

. (11.1.7) 

 
The mutual inductance reciprocity theorem states that the constants are equal  
 
   M12 = M21 ≡ M . (11.1.8) 
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We shall not prove this theorem. It’s left as a difficult exercise for the reader to prove this 
result using Ampere’s law and the Biot-Savart law.  
 
Example 11.1 Mutual Inductance of Two Concentric Co-planar Loops 
 
Consider two single-turn co-planar, concentric coils of radii   R1  and   R2 , with   R1 >> R2 , 
as shown in Figure 11.1.3. What is the mutual inductance between the two loops? 
 

 
 

Figure 11.1.3 Two concentric current loops 
 
Solution: The mutual inductance can be computed as follows. Using Eq. (9.1.15) of 
Chapter 9, we see that the magnitude of the magnetic field at the center of the ring due to 

  I1  in the outer coil is given by  

 
  
B1 =

µ0 I1

2R1

. (11.1.9) 

 
Because   R1 >> R2 , we approximate the magnetic field through the entire inner coil by 

  B1 . Hence, the flux through the second (inner) coil is 
 

 
  
Φ12 = B1A2 =

µ0 I1

2R1

πR2
2 =

µ0π I1R2
2

2R1

. (11.1.10) 

  
Thus, the mutual inductance is given by 
 

 
  
M =

Φ12

I1

=
µ0πR2

2

2R1

 (11.1.11) 

 
The result shows that  M  depends only on the geometrical factors,   R1  and   R2 , and is 
independent of the current   I1  in the coil. 
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11.2  Self-Inductance 
 
Consider again a coil consisting of  N  turns and carrying current  I  in the 
counterclockwise direction, as shown in Figure 11.2.1. If the current is steady, then the 
magnetic flux through the loop will remain constant. However, suppose the current  I  
changes with time, then according to Faraday’s law, an induced emf will arise to oppose 
the change. The induced current will flow clockwise if   dI / dt > 0 , and counterclockwise 
if   dI / dt < 0 . The property of the loop in which its own magnetic field opposes any 
change in current is called self-inductance, and the emf generated is called the self-
induced emf or back emf, which we denote as  εL . The self-inductance may arise from a 
coil and the rest of the circuit, especially the connecting wires.  
 

 
 

Figure 11.2.1 Magnetic flux through a coil 
 
Mathematically, the self-induced emf can be written as  
 

 
    
εL = −N

dΦB,turn

dt
= −N d

dt

B ⋅d

A

turn
∫∫ . (11.2.1) 

 
Because the flux is proportional to the current  I , we can also express this relationship by  
 

 
 
εL = −L dI

dt
. (11.2.2) 

 
where the constant  L  is called the self-inductance. The two expressions can be combined 
to yield 

 
 
L =

NΦB

I
. (11.2.3) 

 
Physically, the self-inductance  L  is a measure of an inductor’s “resistance” to the change 
of current; the larger the value of  L , the lower the rate of change of current.  
 
 
Example 11.2 Self-Inductance of a Solenoid 
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Compute the self-inductance of a solenoid with  N  turns, length  l , and radius  R  with a 
current  I  flowing through each turn, as shown in Figure 11.2.2. 

 
 

Figure 11.2.2 Solenoid 
 
Solution: Ignoring edge effects and applying Ampere’s law, the magnetic field inside a 
solenoid is given by Eq. (9.4.3) 

 
    


B =

µ0 NI
l

k̂ = µ0nI  k̂ , (11.2.4) 

 
where   n = N / l  is the number of turns per unit length. The magnetic flux through each 
turn is 
   ΦB = BA = µ0nI ⋅ (πR2 ) = µ0nIπR2 . (11.2.5) 
 
Thus, the self-inductance is 

 
  
L =

NΦB

I
= µ0n2πR2l . (11.2.6) 

 
We see that  L  depends only on the geometrical factors ( n , R  and  l ) and is independent 
of the current  I . 
 
Example 11.3 Self-Inductance of a Toroid 
 

(a) (b) 

 
Figure 11.2.3  A toroid with N turns 
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Calculate the self-inductance  L  of a toroid, which consists of  N  turns and has a 
rectangular cross section, with inner radius  a , outer radius  b , and height  h , as shown in 
Figure 11.2.3(a). 
 
Solution: According to Ampere’s law (Example 9.5),  
 
 

    

B ⋅ ds∫ = Bds∫ = B ds =∫ B(2πr) = µ0NI . (11.2.7) 

 
The magnitude of the magnetic field inside the torus is given by 
 

 
  
B =

µ0 NI
2πr

. (11.2.8) 

 
The magnetic flux through one turn of the toroid may be obtained by integrating over the 
rectangular cross section, with  dA = hdr  as the differential area element (Figure 
11.2.3b), 

 
    
ΦB =


B ⋅ d

A∫∫ =

µ0NI
2πr

⎛
⎝⎜

⎞
⎠⎟

hdr
a

b

∫ =
µ0NIh

2π
ln b

a
⎛
⎝⎜

⎞
⎠⎟

. (11.2.9) 

 
The total flux is  NΦB . Therefore, the self-inductance is 
 

 
  
L =

NΦB

I
=
µ0N 2h

2π
ln b

a
⎛
⎝⎜

⎞
⎠⎟

. (11.2.10) 

 
Again, the self-inductance  L  depends only on the geometrical factors. Let’s consider the 
situation where  a >> b − a . In this limit, the logarithmic term in the equation above may 
be expanded as  

 
  
ln b

a
⎛
⎝⎜

⎞
⎠⎟
= ln 1+ b − a

a
⎛
⎝⎜

⎞
⎠⎟
≈ b − a

a
, (11.2.11) 

 
and the self-inductance becomes 
 

 
  
L ≈

µ0 N 2h
2π

⋅ b − a
a

=
µ0N 2 A

2πa
=
µ0N 2 A

l
, (11.2.12) 

 
where   A = h(b − a)  is the cross-sectional area, and   l = 2πa . We see that the self-
inductance of the toroid in this limit has the same form as that of a solenoid.  
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Example 11.4 Mutual Inductance of a Coil Wrapped Around a Solenoid 
 
A long solenoid with length  l  and a cross-sectional area  A  consists of   N1  turns of wire. 
An insulated coil of   N2  turns is wrapped around it, as shown in Figure 11.2.4. 
 
(a) Calculate the mutual inductance  M , assuming that all the flux from the solenoid 
passes through the outer coil. 
  
(b) Relate the mutual inductance  M  to the self-inductances   L1  and   L2  of the solenoid 
and the coil. 

 
 

Figure 11.2.4 A coil wrapped around a solenoid 
 
Solutions: 
 
(a) The magnetic flux through each turn of the outer coil due to the solenoid is 
 

 
  
Φ12 = BA =

µ0 N1I1

l
A . (11.2.13) 

 
where   B = µ0 N1I1 / l  is the uniform magnetic field inside the solenoid. Thus, the mutual 
inductance is  

 
  
M =

N2Φ12

I1

=
µ0 N1N2 A

l
. (11.2.14) 

 
(b) From Example 11.2, we see that the self-inductance of the solenoid with   N1  turns is 
given by  

 
  
L1 =

N1Φ11

I1

=
µ0N1

2 A
l

, (11.2.15) 

 
where  Φ11  is the magnetic flux through one turn of the inner solenoid due to the 

magnetic field produced by   I1 .  Similarly, we have   L2 = µ0 N2
2 A / l  for the outer coil. In 

terms of   L1  and   L2 , the mutual inductance can be written as 
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   M = L1L2 . (11.2.16) 
 
More generally the mutual inductance is given by 
 
   M = k L1L2 ,     0 ≤ k ≤ 1 , (11.2.17) 
 
where  k  is the coupling coefficient. In our example, we have   k = 1 , which means that all 
of the magnetic flux produced by the solenoid passes through the outer coil, and vice 
versa, in this idealization. 
 
 
11.3 Energy Stored in Magnetic Fields 
 
Because an inductor in a circuit serves to oppose any change in the current through it, 
work must be done by an external source such as a battery in order to establish a current 
in the inductor. From the work-energy theorem, we conclude that energy can be stored in 
an inductor. The role played by an inductor in the magnetic case is analogous to that of a 
capacitor in the electric case. 
 
The power, or rate at which an external emf  εext works to overcome the self-induced emf 

 εL  and pass current  I  in the inductor is  
 

 
  
PL =

dWext

dt
= Iεext . (11.3.1) 

 
If only the external emf and the inductor are present, then   εext = −εL  which implies that 
 

 
  
PL =

dWext

dt
= − IεL = + IL dI

dt
. (11.3.2) 

  
If the current is increasing with   dI / dt > 0 , then   P > 0  , which means that the external 
source is doing positive work to transfer energy to the inductor. Thus, the internal energy 

 U B  of the inductor is increased. On the other hand, if the current is decreasing with 

  dI / dt < 0 , we then have   P < 0 . In this case, the external source takes energy away from 
the inductor, causing its internal energy to decrease. The total work done by the external 
source to increase the current form zero to  I  is then 
 

 
  
Wext = dWext =∫ LI 'dI '

0

I

∫ =
1
2

LI 2 . (11.3.3) 

 
This is equal to the magnetic energy stored in the inductor, 
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U B =

1
2

LI 2 . (11.3.4) 

 
The above expression is analogous to the electric energy stored in a capacitor, 
 

 
  
U E =

1
2

Q2

C
. (11.3.5) 

 
From an energy perspective there is an important distinction between an inductor and a 
resistor. Whenever a current  I  goes through a resistor, energy flows into the resistor and 
dissipates in the form of heat regardless of whether  I  is steady or time-dependent (recall 
that power dissipated in a resistor is   PR = IVR = I 2 R ). Energy flows into an ideal inductor 
only when the current is varying with   dI / dt > 0 . The energy is not dissipated but stored 
there; it is released later when the current decreases with   dI / dt < 0 . If the current that 
passes through the inductor is steady, then there is no change in energy since 

  PL = LI(dI / dt) = 0 . 
 
 
Example 11.5 Energy Stored in a Solenoid 
 
A long solenoid with length  l  and a radius  R  consists of  N  turns of wire. A current  I  
passes through the coil. Find the energy stored in the system.  
 
Solution: Using Eqs. (11.2.6) and (11.3.4), we readily obtain 
 

 
  
U B = 1

2
LI 2 = 1

2
µ0n2 I 2πR2l . (11.3.6) 

 
The result can be expressed in terms of the magnetic field strength   B = µ0nI , 
 

 
  
U B = 1

2µ0

(µ0nI )2(πR2l) = B2

2µ0

(πR2l) . (11.3.7) 

 
Because   πR2l  is the volume within the solenoid, and the magnetic field inside is uniform, 
the magnetic energy density, or the energy per unit volume of the magnetic field is 
given by 
 

 
  
uB =

B2

2µ0

 (11.3.8) 
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The above expression holds true even when the magnetic field is non-uniform. The result 
can be compared with the energy density associated with an electric field, 
 

 
  
uE =

1
2
ε0 E2 . (11.3.9) 

 
 
11.3.1 Creating and Destroying Magnetic Energy Animation 
 
Let’s consider the process involved in creating magnetic energy.  Here we discuss this 
process qualitatively.  A quantitative calculation is given in Section 13.6.2.  Figure 11.3.1 
shows the process by which an external agent(s) creates magnetic energy.  Suppose we 
have five rings that carry a number of free positive charges that are not moving. Because 
there is no current, there is no magnetic field.  Suppose a set of external agents come 
along (one for each charge) and simultaneously spin up the charges counterclockwise as 
seen from above, at the same time and at the same rate, in a manner that has been pre-
arranged.   Once the charges on the rings start to move, there is a magnetic field in the 
space between the rings, mostly parallel to their common axis, which is stronger inside 
the rings than outside.  This is the solenoid configuration (see Section 9.4). 
 

 
 

Figure 11.3.1 Creating (http://youtu.be/GI2Prj4CGZI) and destroying 
(http://youtu.be/iesoHVfIg6I ) magnetic field energy. 

 
 
As the magnetic flux through the rings grows, Faraday’s law of induction tells us that 
there is an electric field induced by the time-changing magnetic field that is circulating 
clockwise as seen from above.   The force on the charges due to this induced electric field 
is thus opposite the direction the external agents are trying to spin the rings up 
(counterclockwise), and thus the agents have to do additional work to spin up the charges 
because of their charge.  This is the source of the energy that is appearing in the magnetic 
field between the rings — the work done by the agents against the back emf.   

 
Over the course of the “create” animation associated with Figure 11.3.1, the agents 
moving the charges to a higher speed against the induced electric field are continually 
doing work.  The electromagnetic energy is being created at the place where they are 

https://youtu.be/GI2Prj4CGZI
https://youtu.be/iesoHVfIg6I
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doing work (the path along which the charges move) and that electromagnetic energy 
flows primarily inward, but also outward.  The direction of the flow of this energy is 
shown by the animated texture patterns in Figure 11.3.1.  This is the electromagnetic 
energy flow that increases the strength of the magnetic field in the space between the 
rings as each positive charge is accelerated to a higher and higher speed. When the 
external agents have spun the charges to a pre-determined speed, they stop the 
acceleration.  The charges then move at a constant speed, with a constant field inside the 
solenoid, and zero induced electric field, in accordance with Faraday’s law of induction.   
 
We also have an animation of the “destroy” process linked to Figure 11.3.1. This process 
proceeds as follows.  Our set of external agents now simultaneously starts to spin down 
the moving charges (which are still moving counterclockwise as seen from above), at the 
same time and at the same rate, in a manner that has been pre-arranged. Once the charges 
on the rings start to decelerate, the magnetic field in the space between the rings starts to 
decrease in magnitude.  As the magnetic flux through the rings decreases, Faraday’s law 
tells us that there is now an electric field induced by the time-changing magnetic field 
that is circulating counterclockwise as seen from above. The force on the charges due to 
this electric field is thus in the same direction as the motion of the charges.  In this 
situation the agents have work done on them as they try to spin the charges down.   

 
Over the course of the “destroy” animation associated with Figure 11.3.1, the strength of 
the magnetic field decreases, and this energy flows from the field back to the path along 
which the charges move, and is now being provided to the agents trying to spin down the 
moving charges.  The energy provided to those agents as they destroy the magnetic field 
is exactly the amount of energy that they put into creating the magnetic field in the first 
place, neglecting radiative losses (such losses are small if we move the charges at speeds 
small compared to the speed of light).  This is a totally reversible process if we neglect 
such losses.  That is, the amount of energy the agents put into creating the magnetic field 
is exactly returned to the agents as the field is destroyed.   

 
There is one final point to be made.  Whenever electromagnetic energy is being created, 
an electric charge is moving (or being moved) against an electric field (    q

v ⋅

E < 0 ).  

Whenever electromagnetic energy is being destroyed, an electric charge is moving (or 
being moved) along an electric field (    q

v ⋅

E > 0 ).  This is the same rule we saw above 

when we were creating and destroying electric energy above.   
 
 
11.4 RL Circuits 
 
11.4.1 Self-Inductance and the Faraday’s Law 
 
The addition of time-changing magnetic fields to simple circuits means that the closed 
line integral of the electric field around a circuit is no longer zero (Chapter 10.3).  
Instead, we have, for any open surface 
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
E ⋅ d s = −∫

∂
∂t

B ⋅ d

A∫∫ . (11.4.1) 

 
Any circuit in which the current changes with time will have time-changing magnetic 
fields, and therefore associated induced electric fields, which are due to the time 
changing currents, not to the time changing magnetic field (association is not causation).  
How do we solve simple circuits taking such effects into account?  We discuss here a 
consistent way to understand the consequences of introducing time-changing magnetic 
fields into circuit theory--that is, self-inductance.   
 
As soon as we introduce time-changing currents, and thus time changing magnetic fields, 
the electric potential difference between two points in our circuit is no longer well 
defined.  When the line integral of the electric field around a closed loop is no longer 
zero, the potential difference between any two points  a  and  b , is no longer independent 
of the path used to get from  a  to  b .  That is, the electric field is no longer an electrostatic 
(conservative) field, and the electric potential is no longer an appropriate concept (that is, 
  

E  can no longer be written as the negative gradient of a scalar potential).  However, we 
can still write down in a straightforward fashion the differential equation for the current 
  I(t)  that determines the time-behavior of the current in the circuit.   
 

 
 

Figure 11.4.1 One-loop inductor circuit 
 
To show how to do this, consider the circuit shown in Figure 11.4.1. We have a battery, a 
resistor, a switch  S  that is closed at   t = 0 , and a “one-loop inductor.”  It will become 
clear what the consequences of this “inductance” are as we proceed.   For   t > 0 , current is 
in the direction shown (from the positive terminal of the battery to the negative, as usual).  
What is the equation that governs the behavior of our current   I(t)  for   t > 0?  
 
To investigate this, apply Faraday's law to the open surface bounded by our circuit, where 
we take     d


A = dAn̂  pointing out of the plane of the Figure 11.4.1, and    d

s  is 
counterclockwise. First, we would like to evaluate the left-hand-side of Eq. (11.4.1), the 
integral of the electric field around this circuit.   There is an electric field in the battery, 
directed from the positive terminal to the negative terminal, and when we go through the 
battery in the direction of    d

s  that we have chosen, we are moving against that electric 
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field, so the contribution of the battery to our integral is negative and equal to the 
negative of the emf provided by the battery, 
 

   


E ⋅ d s

battery
∫ = −ε . 

 
Then, there is an electric field in the resistor, in the direction of the current, so when we 
move through the resistor in that direction, the contribution to our integral is positive, 
 

   


E ⋅ d s

external
circuit

∫ = IR  . 

 
What about when we move through our one-loop inductor?  There is no electric field in 
this loop if the resistance of the wire making up the loop is zero. Thus, going around the 
closed loop counterclockwise in the direction of the current, we have  
 
 

   

E ⋅ d s = −∫ ε + IR . (11.4.2) 

 
What is the right-hand-side of Eq. (11.4.1)? Because we have assumed in this section that 
the circuit is not moving, we can take the partial with respect to time outside of the 
surface integral and then we simply have the time derivative the magnetic flux through 
the loop. What is the magnetic flux through the open surface? First of all, we arrange the 
geometry so that the part of the circuit that includes the battery, the switch, and the 
resistor makes only a small contribution to  ΦB  as compared to the (much larger in area) 
part of the open surface that constitutes our “one-loop inductor”.  Second, we know that 
the sign of the magnetic flux is positive in that part of the surface, because current in the 
counterclockwise direction will produce a magnetic field   


B  pointing out of the plane of 

Figure 11.4.1, which is the same direction we have assumed for    d

A , so that    


B ⋅ d

A  is 

positive. Note that our magnetic field here is the self-magnetic field—that is the magnetic 
field produced by the current  in the circuit, and not by currents external to this circuit.   
 
We also know that at any point in space,   


B  is proportional to the current I, since it can be 

computed from the Biot-Savart Law, that is,  
   

      

    


B(r,t) =

µo I(t)
4π

d
′s × r − ′r( )
r − ′r( ) 3∫                               (11.4.3) 

 
You may immediately object that the Biot-Savart Law is only good in time-independent 
situations, but in fact, as long as the current is varying on time scales T long compared to 
the speed of light travel time across the circuit and we are within a distance cT of the 
currents, then (11.4.3) is an excellent approximation to the time dependent magnet field.  
If we look at (11.4.3), although for a general point in space it involves a very complicated 
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integral over the circuit, it is clear that     

B(r,t)  is everywhere proportional to   I(t) .  That 

is, if we double the current,   

B  at any point in space will also double.  It then follows that 

the magnetic flux itself must be proportional to  I , because it is the surface integral of   

B , 

and   

B  is everywhere proportional to  I .  That is,  

 

    

ΦB (t) =

B(r,t) ⋅ n̂da

S (t )
∫ =

µ0 I(t)
4π

d′s × r − ′r( )
r − ′r( ) 3∫

⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪
⋅ n̂ da

S
∫

= I(t)
µ0

4π
d′s × r − ′r( )
r − ′r( ) 3∫

⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪
⋅ n̂ da

S
∫ .

                            (11.4.4) 

 
Therefore we can define the self-inductance  L  by 
 
   ΦB (t) = LI(t)  (11.4.5) 
where 

 

    

L =
µ0

4π
d′s × r − ′r( )
r − ′r( ) 3∫

⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪
⋅ n̂ da

S
∫ . (11.4.6) 

 
So the magnetic flux is a constant L times the current.  Note that  L  is a constant in the 
sense that it stays the same as long as we do not change the geometry of the circuit.  If we 
change the geometry of the circuit (for example we halve the radius of the circle in our 
Figure 11.4.1), we will change  L , but for a given geometry,  L  does not change.  Even 
though it may be terrifically difficult to do the integrals in Eq. (11.4.6), once we have 
done it for a given circuit geometry we know  L , and  L  is a constant for that geometry.  
The quantity  L  is called the self-inductance of the circuit, or simply the inductance.  
From the definition in (11.4.6), you can show that the dimensions of L are  µ0  times a 
length.  
 
Regardless of how hard or easy it is to compute  L , it is a constant for a given circuit 
geometry and now we can write down the equation that governs the time evolution of  I .  
If   ΦB (t) = LI(t) , then   dΦB (t) / dt = LdI(t) / dt , and Eq. (11.4.1) becomes  
 

 
 
−ε + IR = −L dI

dt
. (11.4.7) 

 
If we divide Eq. (11.4.7) by  L  and rearrange terms, we find that the equation that 
determines the time dependence of  I  is  
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dI
dt

+ R
L

I = ε
L

. (11.4.8) 

 
We shall explore the solution to this equation in Example 11.6.1.  
 
11.4.2 Kirchhoff's Loop Rule Modified for Inductors: a Warning 
 
We can write the governing equation for   I(t)  from above as  
 

 
  

ΔVi
i
∑ = ε − IR − L dI

dt
= 0  (11.4.9) 

 
where we have now cast it in a form that "looks like" a version of Kirchhoff's Second 
Law, a rule that is often quoted in elementary electromagnetism texts.   Kirchhoff's 
Second Law states that the sum of the potential drops around a circuit is zero.  In a circuit 
with no inductance, this is just a statement that the line integral of the electric field 
around the circuit is zero, which is certainly true if there is no time variation.  However, 
in circuits with currents that vary in time, this "Law" is no longer true.  
 
Unfortunately, many elementary texts choose to approach circuits with inductance by 
preserving "Kirchhoff's Second Law", or the loop theorem, by specifying that if the 
inductor is traversed in the direction of the current, the "potential drop" across an inductor 
is   −LdI(t) / dt . Use of this formalism will give the correct equations.  However, the 
continued use of Kirchhoff's Second Law with inductors is misleading at best, for the 
following reasons.   
 
The continued use of Kirchhoff's Second Law in this way gives the right equations, but it 
confuses the physics.  In particular, saying that there is a "potential drop" across the 
inductor of   −LdI(t) / dt  implies that there is an electric field in the inductor such that the 
integral of   


E  through the inductor is equal to   −LdI(t) / dt .  This is not always, or even 

usually, true.  For example, suppose in our "one-loop" inductor (Figure 11.4.1) that the 
wire making up the loop has negligible resistance compared to the resistance  R .  The 
integral of   


E  through our "one-loop" inductor above is then very small, NOT 

  −LdI(t) / dt .  Why is it very small?  Well, to repeat our assertion above 
 
 

For a single loop circuit, the current I is to an good approximation  
the same in all parts of the circuit 

 
 This is just as valid in a circuit with inductance.  Again, although the current may 
start out at   t = 0  unequal in different parts of the circuit, those inequalities imply that 
charge is piling up somewhere.  The accumulating charge at the pile-up will quickly 
produce an electric field, and this electric field is always in the sense so as to smooth out 
the inequalities in the current. In this particular case, if the conductivity of the wires 
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making up our one-loop inductor is very large, then there will be a very small electric 
field in those wires, because it takes only a small electric field to drive any current you 
need.  The amount of current needed is determined in part by the larger resistance in 
other parts of the circuit, and it is the charge accumulation at the ends of those low 
conductivity resistors that cancel out the field in the inductor and enhance it in the 
resistor, maintaining a constant current in the circuit.  
 
One final point may confuse the issue even further. If you have ever put the probes of a 
voltmeter across the terminals of an inductor (with very small resistance) in a circuit, 
what you measured on the meter of the voltmeter was a "voltage drop" of   −LdI(t) / dt .  
But that is not because there is an electric field in the inductor!   It is because putting the 
voltmeter in the circuit will result in a time changing magnetic flux through the voltmeter 
circuit, consisting of the inductor, the voltmeter leads, and the large internal resistor in 
the voltmeter.   A current will flow in the voltmeter circuit because there will be an 
electric field in the large internal resistance of the voltmeter, with a potential drop across 
that resistor of   −LdI(t) / dt , by Faraday's Law applied to the voltmeter circuit, and that 
is what the voltmeter will read. The voltmeter as usual gives you a measure of the 
potential drop across its own internal resistance, but this is not  a measure of the potential 
drop across the inductor.  It is a measure of the time rate of change of magnetic flux in 
the voltmeter circuit!  As before, there is only a very small electric field in the inductor if 
it has a very small resistance compared to other resistances in the circuit.   
 
 
11.4.3 Example Voltmeter Readings with Time Changing Magnetic Fields 
 
We can think of a voltmeter as a device that registers the line integral 

   

E ⋅ ds∫  along a 

path from the clip of its (+) lead to the clip of its (-) lead. Part of the path lies inside the 
voltmeter itself. The path may also be part of a loop, which is completed by some 
external path from the (-) clip to the (+) clip. With that in mind, consider the arrangement 
in the Figure 11.4.2.  
 

 
 

Figure 11.4.2 Two voltmeters and a time changing magnetic field inside a solenoid 
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The solenoid is so long that its external magnetic field is negligible. Its cross section is 

 20 cm2 in area, and the field inside is to the right and increasing at the rate of  10−2 T ⋅ s-1 . 
Two identical voltmeters are connected as shown to points A and C on the loop, which 
encloses the solenoid and contains the two 50-ohm resistors. The voltmeters are capable 
of reading microvolts and have high internal resistance. What will each voltmeter read? 
Make sure you answer is consistent, from every point of view, with Faraday’s Law (Eq. 
10.3.2).  
 
Solution: Consider the loop containing resistors 1 and 2 with the solenoid passing 
through it. Choose   


A  in the direction opposite the magnetic field, then the magnetic flux 

is    

B ⋅

A = −BA . The change in the magnetic flux and hence the emf through the loop is 

given by 
 

  
ε = −

dΦB

dt
= +

dB
dt

A = (10−2 T ⋅ s-1)(20 ×10−4 m2 ) = 2 ×10−5T ⋅m2 ⋅ s-1 = 20 µV . 

 
Therefore the current in the loop is 
 

  
I =

ε
2R

=
20 µV
100 Ω

= 0.2 µA . 

 
Because the emf is positive, the current is clockwise when looking from right to left in 
Figure 11.4.2.  
 
Now let’s consider the loop that includes resistor 1 and voltmeter 1 that does not enclose 
magnetic flux. Voltmeter 1 measures the line integral inside the voltmeter from the 
positive terminal to the negative terminal, hence the meter measures 
 

    

ΔV1 =

E ⋅ ds

+
inside 1

−

∫ . 

If we complete the path from the negative terminal through resistor 1 to the positive 
terminal then, 

    


E ⋅ ds

−
outside 1

+

∫ = IR1 = (.2 µA)(50 Ω) = 10 µV . 

 
Because there is no changing magnetic flux through this loop, Faraday’s Law is 
 

    


E ⋅ ds

+
inside 1

−

∫ +

E ⋅ ds

−
outside 1

+

∫ = 0 . 

Therefore  
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  ΔV1 + IR1 = 0 . 
Hence voltmeter 1 reads  
 

  ΔV1 = − IR1 = −(.2 µA)(50Ω) = −10 µV . 
 
Note that the higher potential end is at the negative terminal of voltmeter 1.  
 
Now consider Loop 2 that involves resistor 1, voltmeter 2 and encloses changing 
magnetic flux. Faraday’s Law is 

    


E ⋅ ds

+
inside 2

−

∫ +

E ⋅ ds

−
outside 1

+

∫ = −
d
dt


B ⋅ d

A

loop 2
∫∫ . 

 
The changing magnetic flux is 
 

    
−

d
dt


B ⋅ d

A

loop 2
∫∫ = +

dB
dt

A = 20 µV  

Voltmeter 2 measures 

    

ΔV2 =

E ⋅ ds

_
inside 2

−

∫ . 

 
We again complete the path from the negative terminal through resistor 1 to the positive 
terminal, with 

    


E ⋅ ds

−
ext 1

+

∫ = IR1 . 

Therefore Faraday’s Law becomes 

  
ΔV2 + IR1 = −

dΦB

dt
. 

Hence 

  
ΔV2 = − IR1 −

dΦB

dt
= −10 µV+20 µV = 10 µV . 

 
So the higher potential is the positive terminal of voltmeter 2. Both voltmeters are clipped 
to the same points and the measured voltage difference that have opposite signs, 
 

  ΔV1 = −ΔV2 . 
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11.5 How can the Electric Field in an Inductor be Zero? 
 
Students are always confused about the electric field in inductors, in part because of the 
kinds of problems they have seen.  What has changed in our circuit above to make the 
electric field zero in the wires of the (resistanceless) inductor zero, even though there is a 
time changing magnetic flux through it?  This is a very subtle point and a source of 
endless confusion, so let’s look at it very carefully.   
 

Your intuition that there should be an electric field in the wires of an inductor is 
based on doing problems like that shown in Figure 11.5.1(a).  We have a loop of wire of 
radius  a  and total resistance  R  immersed in an external magnetic field that is out of the 
plane of the figure and changing in time as shown in Figure 11.5.1(b).  In considering this 
circuit, unlike in our “one-loop” circuit above, we neglect the magnetic field due to the 
currents in the wire itself, assuming that the external field is much bigger than the self-
field.  The conclusions we arrive at here can be applied to the self-inductance case as 
well.   

 

 
          (a)            (b) 

 
Figure 11.5.1 (a) Conducting loop in a changing magnetic field. (b) Plot of 

external magnetic field vs. time. 
 
 
We calculated the emf in Example 10.3.1 associated with this example and found that  

 
  
ε = −

dBext

dt
πa2 , (11.5.1) 

 
and an induced electric field right at the loop given by  
 

 
    


E = −

1
2

dBext

dt
aφ̂, r < R . (11.5.2) 

 
This “induced” electric field is azimuthal and uniformly distributed around the loop as 
long as the resistance in the loop is uniform. 
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Thus if the resistance is distributed uniformly around the wire loop, we get a uniform 
induced electric field in the loop, circulating clockwise for the external magnetic field 
increasing in time (Eq. (11.5.2)).  This electric field causes a current, and the current is 
directed clockwise in the same sense as the electric field.  The total current in the loop 
will be the total “potential drop” around the loop divided by its resistance R,  
 

 
  
I =

ε
R

=
1
R

dBext

dt
πa2 . (11.5.3) 

 
But what happens if we don’t distribute the resistance uniformly around the wire loop?  
For example, let us make the left half of our loop out of wire with resistance   R1  and the 
right half of the loop out of wire with resistance   R2 , with   R = R1 + R2 , so that we have 
the same total resistance as before (Figure 11.5.3). Let us further assume that   R1 < R2 .  
How is the electric field distributed around the loop now?   
 

 
 

Figure 11.5.2 A loop of wire with 
resistance R in an external field out of 
the plane of figure. 

 
 
Figure 11.5.3 The electric field 
in the case of unequal resistances 
in the loop. 

 
First of all, the electromotive force around the loop (Eq. (11.5.1)) is the same, as 

is the resistance, so that the current  I  has to be the same as in Eq. (11.5.3). Moreover it is 
the same on both sides of the loop by charge conservation.  But the electric field in the 
left half of the loop    


E1  must now be different from the electric field in the right half of 

the loop    

E2 .  This is so because the line integral of the electric field on the left side is 

  πaE1 , and from Ohm’s Law in macroscopic form, this must be equal to   IR1 .  Similarly, 

  πaE2 = IR2 .  Thus 

 
  

E1

E2

=
R1

R2

⇒ E1 < E2 since R1 < R2 . (11.5.4) 

 
This makes sense.  We get the same current on both sides, even though the resistances are 
different, and we do this by adjusting the electric field on the side with the smaller 
resistance to be smaller.  Because the resistance is also smaller, we produce the same 
current as on the opposing side, with this smaller electric field.   
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But what happened to our uniform electric field.  Well there are two ways to produce 
electric fields—one from time changing currents and their associated time changing 
magnet fields, and the other from electric charges.  Nature accomplishes the reduction of 

   

E1  compared to    


E2  by charging at the junctions separating the two wire segments 

(Figure 14.4.5), positive on top and negative on bottom. 
 
The total electric field is the sum of the “induced” electric field and the electric field 
associated with the charges, as shown in the Figure 14.5.3.  It is clear that the addition of 
these two contributions to the electric field will reduce the total electric field on the left 
(side 1) and enhance it on the right (side 2).  The field    


E1  will always be clockwise, but it 

can be made arbitrarily small by making   R1 << R2 .   
 
Thus we see that we can make a non-uniform electric field in an inductor by using non-
uniform resistance, even though our intuition tells us (correctly) that the “induced” 
electric field should be uniform at a given radius.  All that Faraday’s Law tells us is that 
the line integral of the electric field around a closed loop is equal to the negative of the 
time rate of change of the magnet flux through the enclosed surface.  It does not tell us at 
what locations the electric field is non-zero around the loop, and it may be non-zero (or 
zero!) in unexpected places.  The field in the wire making up the “one-loop” inductor we 
considered above is zero (or least very small) for exactly the kinds of reasons we have 
been discussing here.   
 
11.6 Modified Kirchoff’s Law (Misleading, see Section 11.4.2) 
 
We now give a modified version of Kirchoff’s Law which includes inductors, but you 
must always be aware that this modified version is wrong (see Section 11.4.2).  However 
it is a useful mnemonic.  The modified rule for inductors may be obtained as follows: The 
polarity of the self-induced emf is such as to oppose the change in current, in accord with 
Lenz’s law. If the rate of change of current is positive, as shown in Figure 11.6.1(a), the 
self-induced emf  εL sets up an induced current   Iind  moving in the opposite direction of 
the current  I  to oppose such an increase. The inductor could be replaced by an emf 

  | εL |= L | dI / dt |= +L(dI / dt)  with the polarity shown in Figure 11.6.1(a). On the other 
hand, if   dI / dt < 0 , as shown in Figure 11.6.1(b), the induced current   Iind  set up by the 

self-induced emf  εL  flows in the same direction as  I  to oppose such a decrease. 
 



 
 

11-26 

 
 

(a) (b) 

 
Figure 11.6.1 Modified Kirchhoff’s rule for inductors (a) with increasing current, and (b) 
with decreasing current.  See Section 11.4.2 for cautions about the use of this modified 
rule. 
 
The modified rule for inductors may be obtained as follows: The polarity of the self-
induced emf is such as to oppose the change in current, in accord with Lenz’s law. If the 
rate of change of current is positive, as shown in Figure 11.6.1(a), the self-induced emf 

 εL sets up an induced current   Iind  moving in the opposite direction of the current  I  to 
oppose such an increase. The inductor could be replaced by an emf 

  | εL |= L | dI / dt |= +L(dI / dt)  with the polarity shown in Figure 11.6.1(a). On the other 
hand, if   dI / dt < 0 , as shown in Figure 11.6.1(b), the induced current   Iind  set up by the 

self-induced emf  εL  flows in the same direction as  I  to oppose such a decrease. 
 
We see that whether the rate of change of current in increasing (  dI / dt > 0 ) or decreasing 
(  dI / dt < 0 ), in both cases, the change in potential when moving from  a  to  b  along the 
direction of the current  I  is   Vb − Va = −L(dI / d t) . Thus, we have 
 

Kirchhoff's Loop Rule Modified for Inductors (Misleading, see Section 11.4.2): 
 
If an inductor is traversed in the direction of the current, the “potential change” is 
  −L(dI / dt) . On the other hand, if the inductor is traversed in the direction opposite of the 
current, the “potential change” is   +L(dI / dt) . 
 
Use of this modified Kirchhoff’s rule will give the correct equations for circuit problems 
that contain inductors.  However, keep in mind that it is misleading at best, and at some 
level wrong in terms of the physics. Again, we emphasize that Kirchhoff's loop rule was 
originally based on the fact that the line integral of   


E  around a closed loop was zero.  

With time-changing magnetic fields, this is no longer so, and thus the sum of the 
“potential drops” around the circuit, if we take that to mean the negative of the closed 
loop integral of   


E , is no longer zero − in fact it is   +L(dI / dt) .   
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11.6.1 Rising Current 
 

  
 
Figure 11.6.2 (a) RL Circuit with rising current. (b) Equivalent circuit using the modified 
Kirchhoff’s loop rule. 
 
Consider the  RL  circuit shown in Figure 11.6.2. At    t = 0  the switch is closed. We find 
that the current does not rise immediately to its maximum value   ε / R . This is due to the 
presence of the self-induced emf in the inductor. Using the modified Kirchhoff’s rule for 
increasing current,   dI / dt > 0 , the  RL  circuit is described by the following differential 
equation: 

 
  
ε − IR− |εL | = ε − IR− L dI

dt
= 0 . (11.6.1) 

 
Note that there is an important distinction between an inductor and a resistor. The 
potential difference across a resistor depends on  I , while the potential difference across 
an inductor depends on dI / dt . The self-induced emf does not oppose the current itself, 
but the change of current dI / dt . Eq. (11.6.1) can be rewritten as  
 

 
  

dI
I − ε / R

= −
dt

L / R
. (11.6.2) 

 
Integrating over both sides and imposing the condition   I(t = 0) = 0 , the solution to the 
differential equation is 

 
  
I(t) = ε

R
(1− e− t/τ ) . (11.6.3) 

 
This solution reduces to what we expect for large times, that is   I(∞) = ε / R , but it also 
shows a continuous rise of the current from   I(t = 0) = 0  initially to this final value, with a 
characteristic time Lτ  defined by 

 
 
τ L =

L
R

. (11.6.4) 

 
This time constant is known as the inductive time constant.  This is the effect of having a 
non-zero inductance in a circuit, that is, of taking into account the “induced” electric 
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fields that always appear when there are time changing   

B  fields. This is what we 

expect—the reaction of the system is to try to keep things the same, delaying the build-up 
of current (or its decay, if we already have current flowing in the circuit).   
 

 
 

Figure 11.6.3 Current in the  RL  circuit as a function of time 
 
The qualitative behavior of the current as a function of time is depicted in Figure 11.6.3. 
Note that after a sufficiently long time, the current reaches its equilibrium value   ε / R . 
The time constant τ  is a measure of how fast the equilibrium state is attained; the larger 
the value of  L , the longer it takes to build up the current. A comparison of the behavior 
of current in a circuit with or without an inductor is shown in Figure 11.6.4. Similarly, the 
magnitude of the self-induced emf can be obtained as 
 

 
  
|εL |= −L dI

dt
= εe− t/τ , (11.6.5) 

 
which is at a maximum when   t = 0  and vanishes as  t  approaches infinity. This implies 
that a sufficiently long time after the switch is closed, self-induction disappears and the 
inductor simply acts as a conducting wire connecting two parts of the circuit.   
 

 
 

Figure 11.6.4 Behavior of current in a circuit with or without an inductor 
 

To see that energy is conserved in the circuit, we multiply Eq. (11.6.1) by  I  and obtain 
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Iε = I 2 R+ LI dI

dt
. (11.6.6) 

 
The left-hand side represents the rate at which the battery delivers energy to the circuit. 
On the other hand, the first term on the right-hand side is the power dissipated in the 
resistor in the form of heat, and the second term is the rate at which energy is stored in 
the inductor. While the energy dissipated through the resistor is irrecoverable, the 
magnetic energy stored in the inductor can be released later.  
 
 
11.6.2 Decaying Current 
 
Next we consider the  RL  circuit shown in Figure 11.6.5. Suppose the switch   S1  has been 
closed for a long time so that the current is at its equilibrium value   ε / R . What happens 
to the current when at   t = 0  switches   S1  is opened and   S2  closed?  

  
     

Figure 11.6.5 (a)  RL  circuit with decaying current, and (b) equivalent circuit. 
 
Applying the modified Kirchhoff’s loop rule to the right loop for decreasing current, 
  dI / dt < 0 , yields 

 
  
|εL |− IR = −L dI

dt
− IR = 0 , (11.6.7) 

which can be rewritten as 

 
  
dI
I
= −

dt
L / R

. (11.6.8) 

 
The solution to the above differential equation is 
 

 
  
I(t) = ε

R
e− t/τ , (11.6.9) 

 
where   τ = L / R  is the same time constant as in the case of rising current. A plot of the 
current as a function of time is shown in Figure 11.6.6. 
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Figure 11.6.6 Decaying current in a  RL  circuit 
 
 
 
 
11.7  LC Oscillations 
 
Consider a  LC  circuit in which a capacitor is connected to an inductor, as shown in 
Figure 11.7.1. 

 
 

Figure 11.7.1  LC  Circuit 
 
Suppose the capacitor initially has charge   Q0 . When the switch is closed, the capacitor 
begins to discharge and the electric energy is decreased. On the other hand, the current 
created from the discharging process generates magnetic energy that then gets stored in 
the inductor. In the absence of resistance, the total energy is transformed back and forth 
between the electric energy in the capacitor and the magnetic energy in the inductor. This 
phenomenon is called electromagnetic oscillation. 
 
The total energy in the  LC  circuit at some instant after closing the switch is 
 

 
  
U =UC +U L =

1
2

Q2

C
+

1
2

LI 2 . (11.7.1) 

 
The fact that  U  remains constant implies that 
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dU
dt

=
d
dt

1
2

Q2

C
+

1
2

LI 2⎛

⎝⎜
⎞

⎠⎟
=

Q
C

dQ
dt

+ LI dI
dt

= 0 . (11.7.2) 

 
Eq. (11.7.2) can be rewritten as 

 
  
Q
C

+ L d 2Q
dt2 = 0 , (11.7.3) 

 
where   I = −dQ / dt  (and   dI / dt = −d 2Q / dt2 ). Notice the sign convention we have 
adopted here. The negative sign implies that the current  I  is equal to the rate of decrease 
of charge in the capacitor plate immediately after the switch has been closed. The same 
equation can be obtained by applying the modified Kirchhoff’s loop rule clockwise: 
 

 
  
Q
C

− L dI
dt

= 0 , (11.7.4) 

 
followed by our definition of current. The general solution to Eq. (11.5.3) is 
 
   Q(t) = Q0 cos(ω0t + φ) , (11.7.5) 
 
where Q0 is the amplitude of the charge,   ω0t + φ  is the phase, and φ is the phase 
constant. The angular frequency  ω0  is given by  
 

 
  
ω0 =

1
LC

. (11.7.6) 

 
The corresponding current in the inductor is  
 

 
  
I(t) = −

dQ
dt

=ω0Q0 sin(ω0t + φ) = I0 sin(ω0t + φ) , (11.7.7) 

 
where   I0 = ω0Q0 . From the initial conditions   Q(t = 0) = Q0  and   I(t = 0) = 0 , the phase 
constant φ can be determined to be  φ = 0 . Thus, the solutions for the charge and the 
current in our LC circuit are 
   Q(t) = Q0 cos(ω0t) , (11.7.8) 
and 
   I(t) = I0 sin(ω0t) . (11.7.9) 
 
The time dependence of   Q(t)  and   I(t)  are depicted in Figure 11.7.2. 
 



 
 

11-32 

 
 

Figure 11.7.2 Charge and current in the  LC  circuit as a function of time 
 
Using Eqs. (11.7.8) and (11.7.9), we see that at any instant of time, the electric energy 
and the magnetic energies are given by 
 

 
  
U E =

Q2 (t)
2C

=
Q0

2

2C
⎛

⎝
⎜

⎞

⎠
⎟ cos2(ω0t) , (11.7.10) 

and 

 

  

U B =
1
2

LI 2 (t) =
LI0

2

2
sin2(ω0t)

=
L(−ω0Q0 )2

2
sin2(ω0t) =

Q0
2

2C
⎛

⎝
⎜

⎞

⎠
⎟ sin2(ω0t)

 (11.7.11) 

 
respectively. One can easily show that the total energy remains constant: 
 

 
  
U =U E +U B =

Q0
2

2C
⎛

⎝
⎜

⎞

⎠
⎟ cos2ω0t +

Q0
2

2C
⎛

⎝
⎜

⎞

⎠
⎟ sin2ω0t =

Q0
2

2C
 (11.7.12) 

 
The electric and magnetic energy oscillation is illustrated in Figure 11.7.3. 
 

 
 

Figure 11.7.3 Electric and magnetic energy oscillations 
 
The mechanical analog of the  LC  oscillations is the mass-spring system, shown in 
Figure 11.7.4. 
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Figure 11.7.4 Mass-spring oscillations 
 
If the mass is moving with a speed  v  and the spring having a spring constant  k  is 
displaced from its equilibrium by  x , then the energy   Emech  of this mechanical system is 
 

 
  
Emech = K +Usp =

1
2

mv2 +
1
2

kx2 , (11.7.13) 

 
where  K  and   

Usp  are the kinetic energy of the mass and the potential energy of the 

spring, respectively. In the absence of friction,   Emech  is constant and we obtain 
 

 
  

dEmech

dt
=

d
dt

1
2

mv2 +
1
2

kx2⎛
⎝⎜

⎞
⎠⎟
= mv

dv
dt

+ kx
dx
dt

= 0 . (11.7.14) 

 
Using   v = dx / dt  and   dv / dt = d 2x / dt2 , the above equation may be rewritten as 
 

 
  
m

d 2x
dt2 + kx = 0 . (11.7.15) 

 
The general solution for the displacement is  
 
   x(t) = Acos(ω0t + φ)  (11.7.16) 
where 

 
  
ω0 =

k
m

 (11.7.17) 

 
is the angular frequency and  A  is the amplitude of the oscillations. Thus, at any instant in 
time, the energy of the system may be written as  
 

 

  

Emech =
1
2

mA2ω0
2 sin2(ω0t +φ)+

1
2

kA2 cos2(ω0t +φ)

=
1
2

kA2 sin2(ω0t +φ)+ cos2(ω0t +φ)⎡⎣ ⎤⎦ =
1
2

kA2

. (11.7.18) 
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11.8 The RLC Series Circuit 
 
We now consider a series  RLC  circuit that contains a resistor, an inductor and a 
capacitor, as shown in Figure 11.8.1. 

 
 

Figure 11.8.1 A series  RLC  circuit 
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Figure 11.7.5 Energy oscillations in the  LC  Circuit and the mass-spring system 

In Figure 11.7.5 we illustrate the energy oscillations in the  LC  Circuit and the mass-
spring system (harmonic oscillator). 
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The capacitor is initially charged to   Q0 . After the switch is closed current will begin to 
flow. However, unlike the  LC  circuit energy will be dissipated through the resistor. The 
rate at which energy is dissipated is 

 
  
dU
dt

= − I 2 R . (11.8.1) 

 
where the negative sign on the right-hand side implies that the total energy is decreasing. 
After substituting Eq. (11.7.2) for the left-hand side of the above equation, we obtain the 
following differential equation 

 
  
Q
C

dQ
dt

+ LI dI
dt

= − I 2 R . (11.8.2) 

  
Again, by our sign convention where current is equal to the rate of decrease of charge in 
the capacitor plates,   I = −dQ / dt . Dividing both sides by  I , the above equation can be 
rewritten as  

 
  
L d 2Q

dt2 + R dQ
dt

+
Q
C

= 0 . (11.8.3) 

 
For small  R  (the underdamped case, see Appendix 1), one can readily verify that a 
solution to the above equation is 
 
   Q(t) = Q0e

−γ t cos(ω 't +φ) , (11.8.4) 
where the damping factor is  

 
  
γ =

R
2L

. (11.8.5) 

 
The angular frequency of the damped oscillations 
 
  ω ' = ω0

2 −γ 2 . (11.8.6) 
 
The constants   Q0  and φ  are real quantities to be determined from the initial conditions. 
In the limit where the resistance vanishes,   R = 0 , we recover the undamped natural 
angular frequency   ω0 =1/ LC . There are three possible scenarios and the details are 
discussed in Appendix 1 (Section 11.10). 
 
The mechanical analog of the series  RLC  circuit is the damped harmonic oscillator 
system. The equation of motion for this system is given by 
 

 
  
m

d 2x
dt2 + b

dx
dt

+ kx = 0 , (11.8.7) 
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where the velocity-dependent term accounts for the non-conservative, dissipative force 
 

 
 
F = −b

dx
dt

 (11.8.8) 

 
with  b  being the damping coefficient. The correspondence between the  RLC  circuit and 
the mechanical system is summarized in Table 11.8.1. (Note that the sign of the current 
 I  depends on the physical situation under consideration.) 
 

 RLC Circuit Damped Harmonic Oscillator 

   Variable s Q x 

   Variable ds/dt  ± I  v 

   Coefficient of s 1/C k 

   Coefficient of ds/dt R b 

   Coefficient of d2s/dt2 L m 

   Energy 
LI 2/2 mv2/2 

Q2/2C kx2/2 
 

Table 11.8.1 Correspondence between the  RLC  circuit and the mass-spring system 
 
11.9 Summary 
 

• Using Faraday’s law of induction, the mutual inductance of two coils is given by 
 

 
  
M12 =

N12Φ12

I1

= M21 =
N1Φ21

I2

= M . 

 
• The induced emf in coil 2 due to the change in current in coil 1 is given by 
 

 
  
ε2 = −M

dI1

dt
. 

 
• The self-inductance of a coil with N turns is 
 

 
 
L =

NΦB

I
  

  
            where  ΦB  is the magnetic flux through one turn of the coil. 
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• The self-induced emf responding to a change in current inside a coil current is 
 

 
 
εL = −L dI

dt
.  

  
• The inductance of a solenoid with N turns, cross sectional area A and length l is 
 

 
  
L =

µ0 N 2 A
l

.  

 
• If a battery, supplying an emf ε , is connected to an inductor and a resistor in 

series at time   t = 0 , then the current in this RL circuit as a function of time is 
 

 
  
I(t) = ε

R
(1− e− t /τ ) . 

   
            where   τ = L / R  is the time constant of the circuit. If the battery is removed in the 

 RL  circuit, the current will decay as 
 

 
  
I(t) = ε

R
e− t /τ .  

 
• The magnetic energy stored in an inductor with current  I  passing through is 

 

 
  
U B =

1
2

LI 2 .  

 
• The magnetic energy density at a point with magnetic field strength  B  is 
 

 
  
uB =

B2

2µ0

.  

 
• The differential equation for an oscillating LC circuit is  
 

  
d 2Q
dt2 + ω0

2Q = 0 , 

where 
  
ω0 =

1
LC

 is the angular frequency of oscillation. The charge on the   

capacitor as a function of time is given by 
 

  Q(t) = Q0 cos(ω0t + φ)  
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      and the current in the circuit is 
 

  
I(t) = −

dQ
dt

= +ω0Q0 sin(ω0t + φ) . 

   
• The total energy in an  LC  circuit is, using   I0 = ω0Q0 ,  
 

  
U =U E +U B =

Q0
2

2C
cos2ω0t +

LI0
2

2
sin2ω0t =

Q0
2

2C
. 

 
• The differential equation for an RLC circuit is  
 

 
  
d 2Q
dt2 + 2γ dQ

dt
+ ω0

2Q = 0 , 

 

 where 
  
ω0 =

1
LC

 and   γ = R / 2L . In the underdamped case, the charge on the 

capacitor as a function of time is 
 

   Q(t) = Q0e
−γ t cos(ω 't + φ) ,  

 

            where  ω ' = ω0
2 − γ 2 .  

 
 
11.10 Appendix 1: General Solutions for the RLC Series Circuit 
 
In Section 11.8, we have shown that the  RLC  circuit is characterized by the following 
differential equation 

 
  
L d 2Q

dt2 + R dQ
dt

+
Q
C

= 0  (11.10.1) 

whose solutions is given by 
 
   Q(t) = Q0e

−γ t cos(ω 't +φ)  (11.10.2) 
where the damping factor is 

 
  
γ =

R
2L

 (11.10.3) 

and the angular frequency of the damped oscillations is 
 
  ω ' = ω0

2 −γ 2 . (11.10.4) 
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There are three possible scenarios, depending on the relative values of γ  and  ω0 . 
 
Case 1: Underdamping 
 
When  ω0 > γ , or equivalently,  ω '  is real and positive, the system is said to be 
underdamped. This is the case when the resistance is small. Charge oscillates (the cosine 
function) with exponentially decaying amplitude   Q0e

−γ t . However, the frequency of this 
damped oscillation is less than the undamped oscillation,  ω ' <ω0 .  The qualitative 
behavior of the charge on the capacitor as a function of time is shown in Figure 11.10.1. 
 

                  
 

Figure 11.10.1 Underdamped oscillations 
 

As an example, suppose the initial condition is   Q(t = 0) = Q0 . The phase constant is then 

 φ = 0 , and  
   Q(t) = Q0e

−γ t cos(ω 't) . (11.10.5) 
The corresponding current is  
 

 
  
I(t) = −

dQ
dt

= Q0ω 'e−γ t sin(ω 't)+ (γ /ω ')cos(ω 't)⎡⎣ ⎤⎦ . (11.10.6) 

 
For small  R , the above expression may be approximated as  
 

 
  
I(t) ≈

Q0

LC
e−γ t sin(ω 't +δ )  (11.10.7) 

where  

 
 
δ = tan−1 γ

ω '
⎛
⎝⎜

⎞
⎠⎟

. (11.10.8) 

 
The derivation is left to the readers as an exercise. 
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Case 2: Overdamping 
 
In the overdamped case,  ω0 < γ , implying that  ω '  is imaginary. There is no oscillation in 

this case. By writing   ω ' = iβ , where  β = γ 2 −ω0
2 , one may show that the most general 

solution can be written as 
   Q(t) = Q1e

−(γ +β )t +Q2e
−(γ −β )t , (11.10.9) 

 
where the constants   Q1  and   Q2  can be determined from the initial conditions. 
 

 
 

Figure 11.10.2 Overdamping and critical damping 
 
Case 3: Critical damping 
 
When the system is critically damped,  ω0 = γ ,  ω ' = 0 . Again there is no oscillation. The 
general solution is  
   Q(t) = (Q1 +Q2t)e

−γ t , (11.10.10) 
 
where   Q1  and   Q2  are constants which can be determined from the initial conditions. In 
this case one may show that the energy of the system decays most rapidly with time. The 
qualitative behavior of   Q(t)  in overdamping and critical damping is depicted in Figure 
11.10.2. 
 
 
11.10.1 Quality Factor 
 
When the resistance is small, the system is underdamped, and the charge oscillates with 
decaying amplitude   Q0e

−γ t . The “quality” of this underdamped oscillation is measured by 
the so-called “quality factor,”   

Qqual  (not to be confused with charge.) The larger the value 

of   
Qqual , the less the damping and the higher the quality. Mathematically,   

Qqual  is defined 
as 
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Qqual =ω '

energy stored
average power dissipated

⎛
⎝⎜

⎞
⎠⎟
=ω '

U
| dU / dt |

. (11.10.11) 

 
Using Eq. (11.10.2) the electric energy stored in the capacitor is 
 

 
  
U E =

Q(t)2

2C
=

Q0
2

2C
e−2γ t cos2(ω 't + φ) . (11.10.12) 

 
To obtain the magnetic energy, we approximate the current as 
 

 

  

I(t) = −
dQ
dt

= Q0ω 'e−γ t sin(ω 't + φ) +
γ
ω '

⎛
⎝⎜

⎞
⎠⎟

cos(ω 't + φ)
⎡

⎣
⎢

⎤

⎦
⎥

≈ Q0ω 'e−γ t sin(ω 't + φ)

≈
Q0

LC
e−γ t sin(ω 't + φ)

 (11.10.13) 

 
assuming that   ω ' γ  and   ω '2 ≈ω0

2 =1/ LC . Thus, the magnetic energy stored in the 
inductor is given by 
 

 .
  
U B =

1
2

LI 2 ≈
LQ0

2

2
ω '2 e−2γ t sin2(ω 't + φ) ≈

Q0
2

2C
e−2γ t sin2(ω 't + φ) . (11.10.14) 

 
Adding up the two terms, the total energy of the system is   
 

 
  
U =U E +U B ≈

Q0
2

2C
e−2γ t cos2(ω 't + φ) +

Q0
2

2C
e−2γ t sin2(ω 't + φ) =

Q0
2

2C
⎛

⎝
⎜

⎞

⎠
⎟ e−2γ t .(11.10.15) 

 
Differentiating the expression with respect to  t  then yields the rate of change of energy  
 

 
  

dU
dt

= −2γ
Q0

2

2C
e−2γ t

⎛

⎝
⎜

⎞

⎠
⎟ = −2γU . (11.10.16) 

 
Thus, the quality factor becomes 
 

 
  
Qqual =ω '

U
| dU / dt |

=
ω '
2γ

=
ω ' L

R
. (11.10.17) 

 
As expected, the smaller the value of  R , the greater the value of   

Qqual , and therefore the 
higher the quality of oscillation.   
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11.11 Appendix 2: Stresses Transmitted by Magnetic Fields 
 
In Chapter 9, we showed that the magnetic field due to an infinite sheet in the xy-plane 
carrying a surface current     


K = K î  is given by 

 

 

    


B =

−
µ0K

2
ĵ,  z > 0

 
µ0K

2
ĵ,  z < 0

⎧

⎨
⎪
⎪

⎩
⎪
⎪

. (11.11.1) 

 
Now consider two sheets separated by a distance  d  carrying surface currents in the 
opposite directions, as shown in Figure 11.11.1. 
 

  
 
 
Figure 11.11.1 Magnetic field due to two sheets carrying surface current in the opposite 
directions 
 
Using the superposition principle, we may show that the magnetic field is non-vanishing 
only in the region between the two sheets, and is given by 
 
     


B = µ0 K ĵ,  − d / 2 < z < d / 2 . (11.11.2) 

 
Using Eq. (11.3.8) the magnetic energy stored in this system is 
 

 
  
U B = B2

2µ0

( Ad) =
(µ0 K )2

2µ0

( Ad) =
µ0

2
K 2 ( Ad) , (11.11.3) 

 
where  A  is the area of the plate. The corresponding magnetic energy density is  
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uB =

U B

Ad
=
µ0

2
K 2 . (11.11.4) 

 
Now consider a small current-carrying element     Id s1 = (K Δy)Δx î  on the upper plate 
(Recall that  K  has dimensions of current/length). The force experienced by this element 
due to the magnetic field of the lower sheet is  
 

 
    
d

F21 = Id

s1 ×

B2 = (KΔy Δx î) ×

µ0

2
K ĵ

⎛
⎝⎜

⎞
⎠⎟
=
µ0

2
K 2 (ΔxΔy)k̂ . (11.11.5) 

 
The force points in the   +k̂  direction and therefore is repulsive. This is expected since the 
currents flow in opposite directions. Since     d


F21  is proportional to the area of the current 

element, we introduce force per unit area,    

f21 , and write  

 

 
    


f21 =


K1 ×


B2 =

µ0

2
K 2 k̂ = uB k̂ , (11.11.6) 

 
using Eq. (11.11.4). The magnitude of the force per unit area,   f21 , is exactly equal to the 
magnetic energy density  uB . Physically,   f21  may be interpreted as the magnetic pressure 
 

 
  
f21 = P = uB = B2

2µ0

 (11.11.7) 

 
The repulsive force experienced by the sheets is shown in Figure 11.11.2. 
 

  
 
Figure 11.11.2 Magnetic pressure exerted on (a) the upper plate, and (b) the lower plate  

 
 
11.12 Problem-Solving Strategies 
 
11.12.1 Calculating Self-Inductance 
 
The self-inductance  L of an inductor can be calculated using the following steps. 
 

1. Assume a steady current  I  for the inductor, which may be a conducting loop, a 
solenoid, a toroid, or coaxial cables.   
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2. Choose an appropriate cross section  S  and compute the magnetic flux through  S  

using 
 

   
ΦB =


B ⋅ d


A

S
∫∫ . 

 
If the surface were bounded by  N  turns of wires, then the total magnetic flux 
through the surface would be  NΦB . 
 

3. The inductance may be obtained as  
 

 
 
L =

NΦB

I
. 

 
 
11.12.2 Circuits containing inductors 
 
Three types of single-loop circuits were examined in this chapter:  RL ,  LC  and  RLC . To 
set up the differential equation for a circuit, we apply the Kirchhoff’s loop and junction 
rules, as we did in Chapter 7 for the  RC  circuits. For circuits that contain inductors, the 
corresponding modified Kirchhoff’s rule is schematically shown below.   
 

  
 
Note that the “potential difference” across the inductor is proportional to dI / dt , the rate 
of change of current. The situation simplifies if we are only interested in the long-term 
behavior of the circuit where the currents have reached their steady state and dI / dt = 0 . 
In this limit, the inductor acts as a short circuit and can simply be replaced by an ideal 
wire. 
 
11.13  Solved Problems 
 
 
11.13.1  Energy stored in a toroid 
 
A toroid consists of N  turns and has a rectangular cross section, with inner radius a , 
outer radius b  and height h  (see Figure 11.2.3). Find the total magnetic energy stored in 
the toroid. 
 
Solution: In Example 11.3 we showed that the self-inductance of a toroid is  
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L =

NΦB

I
=
µ0N 2h

2π
ln b

a
⎛
⎝⎜

⎞
⎠⎟

. 

 
Thus, the magnetic energy stored in the toroid is simply  
 

 
  
U B =

1
2

LI 2 =
µ0 N 2 I 2h

4π
ln

b
a

⎛
⎝⎜

⎞
⎠⎟

. (11.13.1) 

 
Alternatively, the energy may be interpreted as being stored in the magnetic field. For a 
toroid, the magnetic field is (see Chapter 9) 
 

  
B =

µ0 NI
2πr

 

 
and the corresponding magnetic energy density is 
 

 
  
uB =

1
2

B2

µ0

=
µ0 N 2 I 2

8π 2r 2 . (11.13.2) 

 
The total energy stored in the magnetic field can be found by integrating over the volume. 
We choose the differential volume element to be a cylinder with radius r , width dr  and 
height h , so that   dV = 2πrhdr . This leads to 
 

 
  
U B = uB dV∫ =

µ0 N 2 I 2

8π 2r 2

⎛

⎝
⎜

⎞

⎠
⎟a

b

∫ 2πrh dr =
µ0 N 2 I 2h

4π
ln

b
a

⎛
⎝⎜

⎞
⎠⎟

. (11.13.3) 

 
Thus, both methods yield the same result. 
 
 
 
11.13.2 Magnetic Energy Density 
 
A wire of nonmagnetic material with radius R  and length l  carries a current I  that is 
uniformly distributed over its cross-section. What is the magnetic energy inside the wire? 
 
Solution: Applying Ampere’s law, the magnetic field at distance  r ≤ R  can be obtained 
as 

 
  
B 2πr( ) = µ0 J (πr 2 ) = µ0

I
πR2

⎛
⎝⎜

⎞
⎠⎟

(πr 2 ) . (11.13.4) 

 
The magnitude of the magnetic field is 
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B =

µ0 Ir
2πR2 . (11.13.5) 

 
Because the magnetic energy density (energy per unit volume) is given by 
 

 
  
uB =

B2

2µ0

. (11.13.6) 

 
The magnetic energy stored in the system becomes  
 

 
  
U B =

B2

2µ0

2πrl dr( )
0

R

∫ =
µ0 I 2l
4πR4 r3 dr

0

R

∫ =
µ0 I 2l
4πR4

R4

4
⎛

⎝⎜
⎞

⎠⎟
=
µ0 I 2l
16π

. (11.13.7) 

 
  
11.13.3 Mutual Inductance 
 
An infinite straight wire carrying current I  is placed to the left of a rectangular loop of 
wire with width  w  and length l , as shown in the Figure 11.13.1. Determine the mutual 
inductance of the system. 
 

 
 

Figure 11.13.1 Rectangular loop placed near long straight current-carrying wire 
 
Solution: To calculate the mutual inductance M , we first need to know the magnetic 
flux through the rectangular loop. The magnetic field at a distance r  away from the 
straight wire is   B = µ0 I / 2πr , using Ampere’s law. The total magnetic flux  ΦB  through 
the loop can be obtained by summing over contributions from all differential area 
elements dA = ldr , 
 

 
    
ΦB = dΦB =


B ⋅ d

A∫∫ =

µ0 IL
2π

dr
rs

s+w

∫ =
µ0 Il
2π

ln
s + w

s
⎛
⎝⎜

⎞
⎠⎟

. (11.13.8) 

 
Thus, the mutual inductance is 
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M =

ΦB

I
=
µ0l
2π

ln
s + w

s
⎛
⎝⎜

⎞
⎠⎟

. (11.13.9) 

 
11.13.4 RL Circuit 
 
Consider the circuit shown in Figure 11.13.2 below.  
 

 
 

Figure 11.13.2 RL circuit 
 
Determine the current through each resistor 
 
(a) immediately after the switch is closed. 
 
(b) a long time after the switch is closed. 
 
Suppose the switch is reopened a long time after it’s been closed. What is each current 
 
(c) immediately after it is opened? 
 
(d) after a long time?                                           
 
Solution: 
 
(a) Immediately after the switch is closed, the current through the inductor is zero 
because the self-induced emf prevents the current from rising abruptly. Therefore, I3 = 0 .  
Since   I1 = I2 + I3 , we have   I1 = I2 . 
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Figure 11.13.3  
 
Applying Kirchhoff’s rules to the first loop shown in Figure 11.13.3 yields 
 

 
  
I1 = I2 =

ε
R1 + R2

. (11.13.10) 

 
(b) After the switch has been closed for a long time, there is no induced emf in the 
inductor and the currents will be constant. Kirchhoff’s loop rule gives for the first loop 
 
   ε − I1R1 − I2R2 = 0 , (11.13.11) 
and for the second loop 
   I2 R2 − I3R3 = 0 . (11.13.12) 
 
Combining the two equations with the junction rule   I1 = I2 + I3 , we obtain 
 

 

  

I1 =
(R2 + R3)ε

R1R2 + R1R3 + R2R3

I2 =
R3 ε

R1R2 + R1R3 + R2R3

I3 =
R2 ε

R1R2 + R1R3 + R2R3

. (11.13.13) 
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(c) Immediately after the switch is opened, the current through   R1  is zero, i.e., I1 = 0 . 
This implies that   I2 + I3 = 0 . On the other hand, loop 2 now forms a decaying  RL  circuit 
and   I3  starts to decrease. Thus,  
 

 
  
I3 = − I2 =

R2ε
R1R2 + R1R3 + R2R3

. (11.13.14) 

   
(d) A long time after the switch has been closed all currents will be zero. That is, 

  I1 = I2 = I3 = 0 . 
 
 
11.13.5 RL Circuit 
 
In the circuit shown in Figure 11.13.4, suppose the circuit is initially open. At time   t = 0  
it is thrown closed.  What is the current in the inductor at a later time  t ? 
 

 
 

Figure 11.13.4  RL  circuit 
 
Solution: Let the currents through   R1 ,   R2  and  L  be   I1 ,   I2 and  I , respectively, as shown 
in Figure 11.13.5.  
 
From Kirchhoff’s junction rule, we have   I1 = I2 + I . Similarly, applying Kirchhoff’s 
loop rule to the left loop yields 
 
   ε − (I + I2 )R1 − I2 R2 = 0 . (11.13.15) 
 

 
 

Figure 11.13.5 
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Similarly, for the outer loop, the modified Kirchhoff’s loop rule gives 
 

 
  
ε − (I + I2 )R1 = L dI

dt
. (11.13.16) 

 
The two equations can be combined to yield 
 

 
  
I2 R2 = L dI

dt
    ⇒    I2 =

L
R2

dI
dt

. (11.13.17) 

 
Substituting into Eq. (11.13.15) the expression obtained above for   I2 , we have 
 

 
  
ε − I + L

R2

dI
dt

⎛

⎝⎜
⎞

⎠⎟
R1 − L dI

dt
= ε − IR1 −

R1 + R2

R2

⎛

⎝⎜
⎞

⎠⎟
L dI

dt
= 0 . (11.13.18) 

 
Dividing the equation by   (R1 + R2 ) / R2  leads to 
 

 
  
ε '− IR '− L dI

dt
= 0 , (11.13.19) 

where  

 
  
R ' =

R1R2

R1 + R2

, ε ' =
R2ε

R1 + R2

. (11.13.20) 

 
The differential equation can be solved and the solution is given by 
 

 
  
I(t) = ε '

R '
(1− e−R ' t / L ) . (11.13.21) 

 
Using the equations in (11.13.20), we have that 
 

 
  

ε '
R '

=
εR2 / (R1 + R2 )
R1R2 / (R1 + R2 )

=
ε
R1

. (11.13.22) 

 
The current through the inductor may be rewritten as 
 

 
  
I(t) = ε

R1

(1− e−R ' t / L ) =
ε
R1

(1− e− t /τ )  (11.13.23) 

 
where   τ = L / R '  is the time constant. 
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11.13.6 LC Circuit 
 
Consider the circuit shown in Figure 11.13.6. Suppose the switch that has been connected 
to point  a  for a long time is suddenly thrown to  b  at   t = 0 .  
 

               
 

Figure 11.13.6  LC  circuit 
 
Find the following quantities: 
  
(a) the frequency of oscillation of the  LC  circuit. 
 
(b) the maximum charge that appears on the capacitor. 
 
(c) the maximum current in the inductor. 
 
(d) the total energy the circuit possesses at any time  t . 
 
 
Solution: 
 
(a) The angular frequency of oscillation of the  LC  circuit is given by 

  ω = 2π f = 1 / LC . Therefore, the frequency is  
 

 
  
f =

1
2π LC

. (11.13.24) 

 
(b) The maximum charge stored in the capacitor before the switch is thrown to  b  is  
 
  Q = Cε . (11.13.25) 
 
(c) The energy stored in the capacitor before the switch is thrown is  
 

 
  
U E =

1
2

Cε 2 . (11.13.26) 

 
On the other hand, the magnetic energy stored in the inductor is  
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U B =

1
2

LI 2 . (11.13.27) 

  
Thus, when the current is at its maximum, all the energy originally stored in the capacitor 
is now in the inductor 

 
  
1
2

Cε 2 =
1
2

LI0
2 . (11.13.28) 

 
This implies a maximum current 

 
  
I0 = ε C

L
. (11.13.29) 

 
(d) At any time, the total energy in the circuit would be equal to the initial energy that the 
capacitance stored, that is 

 
  
U =U E +U B =

1
2

Cε 2 . (11.13.30) 

 
11.14 Conceptual Questions 
 

1. How would you shape a wire of fixed length to obtain the greatest and the 
smallest inductance?  

 
2. If the wire of a tightly wound solenoid is unwound and made into another tightly 

wound solenoid with a diameter 3 times that of the original one, by what factor 
does the inductance change? 

 
3. What analogies can you draw between an ideal solenoid and a parallel-plate 

capacitor? 
 

4. In the  RL  circuit show in Figure 11.14.1, can the self-induced emf ever be greater 
than the emf supplied by the battery? 

 

 
 

Figure 11.14.1 
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5. The magnetic energy density   uB = B2 / 2µ0  may also be interpreted as the 
magnetic pressure. Using the magnetic pressure concept, explain the attractive 
(repulsive) force between two coils carrying currents in the same (opposite) 
direction.  

 
6. Explain why the  LC  oscillation continues even after the capacitor has been 

completely discharged. 
 

7. Explain physically why the time constant   τ = L / R  in a  RL  circuit is 
proportional to  L  and inversely proportional to  R .  

 
 
 
11.15 Additional Problems 
 
 
11.15.1 Solenoid 
 
A solenoid with a length of 30 cm, a radius of 1.0 cm and 500 turns carries a steady 
current   I = 2.0 A .  
 
(a) What is the magnetic field at the center of the solenoid along the axis of symmetry? 
 
(b) Find the magnetic flux through the solenoid, assuming the magnetic field to be 
uniform. 
 
(c) What is the self-inductance of the solenoid? 
 
(d) What is the induced emf in the solenoid if the rate of change of current is 
  dI / dt = 100 A/s ? 
 
11.15.2 Self-Inductance 
 
Suppose you try to wind a wire of length  d  and radius  a  into an inductor, which has the 
shape of a cylinder with a circular cross section of radius  r . The windings are tight 
without wires overlapping. Show that the self-inductance of this inductor is 
 

 
  
L = µ0

rd
4a

. 

11.15.3 Coupled Inductors 
 
(a) If two inductors with inductances   L1  and   L2  are connected in series, show that the 
equivalent inductance is  
   

Leq = L1 + L2 ± 2M , 
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where  M  is their mutual inductance. How is the sign chosen for M ? Under what 
condition can  M  be ignored? 
 
(b) If the inductors are instead connected in parallel, show that, if their mutual inductance 
can be ignored, the equivalent inductance is given by 
 

 
  

1
Leq

= 1
L1

+ 1
L2

. 

 
How would you take the effect of M into consideration? 
 
11.15.4 RL Circuit 
 
The  RL  circuit shown in Figure 11.15.1 contains a resistor   R1  and an inductance  L  in 
series with a battery of emf  ε0 . The switch  S  is initially closed. At   t = 0 , the switch  S  is 
opened, so that an additional very large resistance   R2  (with  R2 >> R1 ) is now in series 
with the other elements.   

 
 

Figure 11.15.1  RL  circuit 
 
(a) If the switch has been closed for a long time before   t = 0 , what is the steady current 

  I0  in the circuit? 
 
(b) While this current   I0  is flowing, at time   t = 0 , the switch  S  is opened. Write the 
differential equation for   I(t)  that describes the behavior of the circuit at times   t ≥ 0 .   
Solve this equation (by integration) for   I(t)  under the approximation that  ε0 = 0 .  
(Assume that the battery emf is negligible compared to the total emf around the circuit 
for times just after the switch is opened.)  Express your answer in terms of the initial 
current   I0 , and   R1 ,   R2 , and  L . 
 
(c) Using your results from (b), find the value of the total emf around the circuit (which 
from Faraday's law is   −LdI / dt ) just after the switch is opened. Is your assumption in 
(b) that  ε0  could be ignored for times just after the switch is opened valid?   
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(d) What is the magnitude of the potential drop across the resistor   R2  at times   t > 0 , just 
after the switch is opened?  Express your answers in terms of  ε0 ,   R1 , and   R2 .  How does 
the potential drop across   R2  just after   t = 0  compare to the battery emf  ε0 , if 

  R2 = 100R1 ?    
 
11.15.5 RL Circuit  
 
In the circuit shown in Figure 11.15.2,  ε = 100 V ,   R1 = 10 Ω ,   R2 = 20 Ω ,   R3 = 30 Ω , 
and the inductance  L  in the right loop of the circuit is 2.0 H.  The inductance in the left 
loop of the circuit is zero.   
                                                    

 
 

Figure 11.15.2  RL  circuit 
 
(a) Find   I1  and   I2  immediately after switch  S  is closed.  
 
(b) Find   I1 and   I2  a long time later.  What is the energy stored in the inductor a long time 
later?   
 
(c) A long, long time later, switch  S  is opened again.  Find    I1  and   I2  immediately after 
switch  S  is opened again.   
 
(d) Find   I1  and   I2  a long time after switch  S  is opened.  How much energy is dissipated 
in resistors   R2 and   R3  between the time immediately after switch  S  is opened again, and 
a long time after that?   
 
(e) Give a crude estimate of what “a long time” is in this problem. 
 
11.15.6 Inductance of a Solenoid With and Without Iron Core 
 
(a) A long solenoid consists of  N  turns of wire, has length  l , and cross-sectional area 
 A . Show that the self-inductance can be written as   L = µ0 N 2 A / l . Note that  L  increases 

as   N 2 , and has dimensions of  µ0  times a length (as must always be true).   
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(b) A solenoid has a length of 126 cm and a diameter of 5.45 cm, with 1870 windings.  
What is its inductance if its interior is vacuum?   
 
(c) If we now fill the interior with iron with an effective permeability constant κm = 968, 
what is its inductance?   
 
(d) Suppose we connect this iron core inductor up in series with a battery and resistor, 
and that the total resistance in the circuit, including that of the battery and inductor, is 
 10 Ω .  How long does it take after the circuit is established for the current to reach 50% 
of its final value?  [Ans. (b) 8.1 mH; (c) 7.88 H; (d) 0.55 s]. 
 
 
11.15.7 RLC Circuit 
 
A  RLC  circuit with battery is set up as shown in Figure 11.15.3.  There is no current 
flowing in the circuit until time   t = 0 , when the switch   S1  is closed.  

 
 

Figure 11.15.3 
 
(a) What is the current  I  in the circuit at a time   t > 0  after the switch   S1  is closed? 
 
(b) What is the current  I  in the circuit a very long time (  t >> L / R ) after the switch   S1  
is closed? 
 
(c) How much energy is stored in the magnetic field of the solenoid a very long time 

  (t >> L R)  after the switch is closed? 
 
For the next two questions, assume that a very long time   (t >> L R)  after the switch   S1  
was closed, the voltage source is disconnected from the circuit by opening the switch   S1  
and that the solenoid is simultaneously connected to a capacitor by closing the switch   S2 . 
Assume there is negligible resistance in this new circuit.  
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Figure 11.15.4 
 

(d) What is the maximum amount of charge that will appear on the capacitor, in terms of 
the quantities given?  
 
(e) How long will it take for the capacitor to first reach a maximal charge after the switch 

  S2  has been closed? 
 
 
11.15.8 Spinning Cylinder 

 
Two concentric, conducting cylindrical shells are charged up by moving  +Q  from the 
outer to the inner conductor, so that the inner conductor has a charge of  +Q  spread 
uniformly over its area, and the outer conductor is left with  −Q  uniformly distributed.  
The radius of the inner conductor is  a ; the radius of the outer conductor is  b ; the length 
of both is  l ; and you may assume that  l >> a  and  l >> b . 

 
(a) What is the electric field for  r < a ,  a < r < b , and  r > b?  Give both magnitude and 
direction. 
 
(b) What is the total amount of energy in the electric field?  (Hint: you may use a variety 
of ways to calculate this, such as using the energy density, or the capacitance, or the 
potential as a function of  Q .  It never hurts to check by doing it two different ways.) 
 
(c) If the cylinders are now both spun counterclockwise (looking down the   z- axis) at the 
same angular velocity ω  (so that the period of revolution is   T = 2π /ω ), what is the total 
current (magnitude and sign) carried by each of the cylinders?  Give your answer in terms 
of ω  and the quantities from the first paragraph, and consider a current to be positive if it 
is in the same direction as ω . 
 
(d) What is the magnetic field created when the cylinders are spinning at angular velocity 
ω ?  You should give magnitude and direction of   


B  in each of the three regions:  r < a , 

 a < r < b , and  r > b .  (Hint: it’s easiest to do this by calculating   

B  from each cylinder 

independently and then getting the net magnetic field as the vector sum.) 
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(e) What is the total energy in the magnetic field when the cylinders are spinning at ω ? 
 
11.15.9 Spinning Loop 
 
A circular, conducting loop of radius  a  has resistance  R  and is spun about its diameter 
that lies along the   y- axis, perpendicular to an external, uniform magnetic field     


B = B k̂ . 

The angle between the normal to the loop and the magnetic field is θ , where  θ =ωt .  
You may ignore the self-inductance of the loop. 
 
(a) What is the magnetic flux through the loop as a function of time? 

 
(b) What is the emf induced around the loop as a function of time? 
 
(c) What is the current flowing in the loop as a function of time? 
 
(d) At an instant that the normal to the loop aligns with the   x- axis, the top of the loop lies 
on the   +z- axis.  At this moment is the current in this piece of loop in the   + ĵ  or   − ĵ  
direction?   
 
(e) What is the magnitude of the new magnetic field   Bind  (as a function of time) created 
at the center of the loop by the induced current? 
 
(f) Estimate the self-inductance  L  of the loop, using approximation that the magnetic 
field strength   Bind  is uniform over the area of the loop and has the value calculated in part 
(e). 
 
(g) At what angular speed ω  will the maximum induced magnetic field strength   Bind  
equal the external field strength  B  (therefore thoroughly contradicting the assumption of 
negligible self-inductance that went into the original calculation of   Bind )?  Express your 
answer in terms of  R  and  L . 
 
11.15.10 LC Circuit 
 
Suppose at 0t =  the capacitor in the  LC  circuit is fully charged to 0Q . At a later time 

/ 6t T= , where T  is the period of the  LC  oscillation, find the ratio of each of the 
following quantities to its maximum value: 
 
(a) charge on the capacitor, 
 
(b) energy stored in the capacitor, 
 
(c) current in the inductor, and  
 
(d) energy in the inductor. 




